Gives
Part
Mid point P(+1C)
Point A(+1C) and B(-1C )
Electric force at centre
F A p = k q 1 q 2 r 2 F_{Ap}=\frac{kq_1q_2}{r^2} F A p = r 2 k q 1 q 2
Put value
F A P = 9 × 1 0 9 × 1 × 1 0. 5 2 = 36 × 1 0 9 N F_{AP}=\frac{9\times10^9\times1\times1}{0.5^2}=36\times10^9N F A P = 0. 5 2 9 × 1 0 9 × 1 × 1 = 36 × 1 0 9 N
F B P = − 9 × 1 0 9 × 1 × 1 0. 5 2 = − 36 × 1 0 9 N F_{BP}=-\frac{9\times10^9\times1\times1}{0.5^2}=-36\times10^9N F BP = − 0. 5 2 9 × 1 0 9 × 1 × 1 = − 36 × 1 0 9 N
F n e t = 36 × 1 0 9 − 36 × 1 0 9 = 0 N F_{net}=36\times10^9-36\times10^9=0N F n e t = 36 × 1 0 9 − 36 × 1 0 9 = 0 N Part (b)
PointA (+1C) point B(-1C) pointC(+1c)
F A P = k q 1 q 2 r A P 2 F_{AP}=\frac{kq_1q_2}{r^2_{AP}} F A P = r A P 2 k q 1 q 2
Put value
F A P = 9 × 1 0 9 × 1 × 1 ( 1 3 ) 2 = 27 N F_{AP}=\frac{9\times10^9\times1\times1}{(\frac{1}{\sqrt3})^2}=27N F A P = ( 3 1 ) 2 9 × 1 0 9 × 1 × 1 = 27 N
F B P = − 9 × 1 0 9 × 1 × 1 ( 1 3 ) 2 = − 27 N F_{BP}=-\frac{9\times10^9\times1\times1}{(\frac{1}{\sqrt3})^2}=-27N F BP = − ( 3 1 ) 2 9 × 1 0 9 × 1 × 1 = − 27 N
F C P = 9 × 1 0 9 × 1 × 1 ( 1 3 ) 2 = 27 N F_{CP}=\frac{9\times10^9\times1\times1}{(\frac{1}{\sqrt3})^2}=27N F CP = ( 3 1 ) 2 9 × 1 0 9 × 1 × 1 = 27 N
F n e t = F A P + F B P + F C P F_{net}=F_{AP}+F_{BP}+F_{CP} F n e t = F A P + F BP + F CP
F n e t = 27 − 27 + 27 = 27 N F_{net}=27-27+27=27N F n e t = 27 − 27 + 27 = 27 N
Part(c)
Centre of force
r A P = r B P = r C P = r D P = 1 2 r_{AP}=r_{BP}=r_{CP}=r_{DP}=\frac{1}{\sqrt2} r A P = r BP = r CP = r D P = 2 1
F A P = K Q 1 Q 2 r A 2 p F_{AP}=\frac{KQ_1Q_2}{r^2_Ap} F A P = r A 2 p K Q 1 Q 2
Put value
F A P = 9 × 1 0 9 × 1 × 1 ( 1 2 ) 2 = 18 N F_{AP}=\frac{9\times10^9\times1\times1}{(\frac{1}{\sqrt2})^2}=18N F A P = ( 2 1 ) 2 9 × 1 0 9 × 1 × 1 = 18 N
F B P = − 9 × 1 0 9 × 1 × 1 ( 1 2 ) 2 = − 18 N F_{BP}=-\frac{9\times10^9\times1\times1}{(\frac{1}{\sqrt2})^2}=-18N F BP = − ( 2 1 ) 2 9 × 1 0 9 × 1 × 1 = − 18 N
F C P = 9 × 1 0 9 × 1 × 1 ( 1 2 ) 2 = 18 N F_{CP}=\frac{9\times10^9\times1\times1}{(\frac{1}{\sqrt2})^2}=18N F CP = ( 2 1 ) 2 9 × 1 0 9 × 1 × 1 = 18 N
F D P = − 9 × 1 0 9 × 1 × 1 ( 1 2 ) 2 = − 18 N F_{DP}=-\frac{9\times10^9\times1\times1}{(\frac{1}{\sqrt2})^2}=-18N F D P = − ( 2 1 ) 2 9 × 1 0 9 × 1 × 1 = − 18 N
F n e t = F A P + F B P + F C P + F D P F_{net}=F_{AP}+F_{BP}+F_{CP}+F_{DP} F n e t = F A P + F BP + F CP + F D P Put value
F n e t = 0 N F_{net}=0N F n e t = 0 N
Part(d)
(a)
Due to centre for Line
Fnet =0N
Due to centre of triangle
Fnet =27N
Due to square at centre
Fnet =0N
Comments