Calculate the total electric potential at the center of:
a. A line segment of length 1.0 m with a +1-C charge and a –1-C charge at its endpoints;
b. An equilateral triangle of side length 1.0 m with alternating +1-C, –1-C, and +1-C charges
placed at its vertices;
c. A square of side length 1.0 m with alternating +1-C, –1-C, +1-C, and –1-C charges placed
at its vertices
d. How did your answers in a, b, and c compare with your electric field calculations for similar
configurations?
Gives
(a) "r_1=r_2=0.5m"
"V_1=\\frac{kq}{r_1}"
Put value
"V_1=\\frac{9\\times10^9\\times 1}{0.5}=18\\times10^{9}V"
"V_2=\\frac{kq}{r_2}"
Net electric potential at symmet of center
"V_{net}=V_1+V_2"
Put value
(b)
Centre at Point P
Point AputQ1= +1C
Side(a)=1m
Distance BP=CP=AP="\\frac{1}{\\sqrt3} m"
Due to +1C centre of potential
"V_A=\\frac{kQ}{r_{AP}}"
"V_A=\\frac{9\\times10^9 \\times1}{\\frac{1}{\\sqrt3}}=9\\sqrt3V"
Similarly point B put charge Q2=-1C
"V_B=-\\frac{9\\times10^9 \\times1}{\\frac{1}{\\sqrt3}}=-9\\sqrt3V"
Point c put +1C
"V_c=\\frac{9\\times10^9 \\times1}{\\frac{1}{\\sqrt3}}=9\\sqrt3V"
"V_{net}=V_A+V_B+V_C"
(C)
PointA(+1C) point B(-1C)
PointC(+1C) point D(-1C)
Centre point P
AP=BP=CP=DP ="\\frac{1}{\\sqrt2}" m
"V_A=\\frac{KQ}{r_{AP}}"
Put value
"V_A=\\frac{9\\times10^9\\times1}{\\frac{1}{\\sqrt2}}=9\\sqrt2V"
Similarly point B
"V_B=-\\frac{9\\times10^9\\times1}{\\frac{1}{\\sqrt2}}=-9\\sqrt2V"
Similarly point C
"V_C=\\frac{9\\times10^9\\times1}{\\frac{1}{\\sqrt2}}=9\\sqrt2V"
Similarly point D
"V_D=-\\frac{9\\times10^9\\times1}{\\frac{1}{\\sqrt2}}=-9\\sqrt2V"
Net potential at centre
"V=V_A+V_B+V_C+V_D"
V=
"9\\sqrt2V-9\\sqrt2V+9\\sqrt2V-9\\sqrt2V=0V"Part(d)
Electric field
"E_A=\\frac{kq}{r^2}"
Put value
"E_A=\\frac{9\\times10^9\\times1}{.5^2}=3.6\\times10^{10}N\/C"
"E_{net}=E_A-E_B=0"
Electric field of triangle
"E_A=\\frac{kQ}{r^2_{AP}}"
"E_A=\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt3})^2}=27" N/C"E_B=-\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt3})^2}=-27N\/C"
"E_c=\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt3})^2}=27N\/C"
"E_{net}=E_A+E_B+E_c"
Put value
"E_{net}=27N\/C"
Electric field square
"E_A=\\frac{KQ}{r^2_{AP}}"
"E_A=\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt2})^2}=18N\/C"
"E_B=-\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt2})^2}=-18N\/C"
"E_C=\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt2})^2}=18N\/C"
"E_D=-\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt2})^2}=-18N\/C"
"E_{net}=E_A+E_B+E_C+E_D"
Put value
"E_{net}=0N\/c"
Comments
Leave a comment