(a) The curcuit diagram of the arrangement described above:
(b) The total charge stored in circuit:
"q=CV_b,"
where C - the equivalent capacitance of the circuit:
"C=\\frac{C_1C_2}{C_1+C_2}+C_3."
So, "q=V_b(\\frac{C_1C_2}{C_1+C_2}+C_3)=12(\\frac{4\\cdot 10^{-6}\\cdot 3\\cdot 10^{-6}}{4\\cdot 10^{-6}+3\\cdot 10^{-6}}+6\\cdot 10^{-6})\\approx 9.3\\cdot 10^{-5}\\space C."
The charge stored in C3:
"q_3=C_3V_b=6\\cdot 10^{-6}\\cdot12=7.2\\cdot 10^{-5}\\space C."
The charges stored in two capacitors C1 and C2, connected in series:
"q_1=q_2=\\frac{q_{12}}{2},"
"q_{12}=C_{12}V_b,"
where "C_{12}" - the equivalent capacitance of two capacitors, connected in series:
"C_{12}=\\frac{C_1C_2}{C_1+C_2}."
So, "q_1=q_2=\\frac{V_bC_1C_2}{2(C_1+C_2)}=\\frac{12\\cdot 4\\cdot 10^{-6}\\cdot 3\\cdot 10^{-6}}{2(4\\cdot 10^{-6}+3\\cdot 10^{-6})}\\approx 1.05\\cdot 10^{-5}\\space C."
Answer: the total charge is "9.3\\cdot 10^{-5}\\space C"; the charges stored in each capacitor: "q_1=q_2=1.05\\cdot 10^{-5}\\space C", "q_3=7.2\\cdot 10^{-5}\\space C".
Comments
incredible web i usual come across ever. You're the best keep it up.
Leave a comment