Answer to Question #159586 in Electric Circuits for wilder

Question #159586
A 10.0 x 10^(-6) F capacitor is charged by a 10.0V battery through a resistance R. The capacitor reaches a potential difference of 4.00V in a time interval of 3.00 s after charging begins. Find R
1
Expert's answer
2021-02-16T10:32:15-0500

Capacitance, C=10×106F=105F\text{C}= 10\times 10^{-6}\text{F}=10^{-5}\text{F}

Voltage, V=10volts\text{V}=10 \text{volts}


As the Capacitor reaches 4 volts in 3 sec

Then the charge stored in the capacitorin 3 sec is

Q=CVQ=105×4=4×105Columb\text{Q=CV}\\Q=10^{-5}\times 4=4\times 10^{-5}\text{Columb}


Total charge on the capacitor, Qo=CV=105×10=104columbQ_o=CV=10^{-5}\times 10=10^{-4}\text{columb}


Using the capacitor Charging equation,

Q=QoetτQ=Q_oe^{-\frac{t}{\tau}}

105=104e3τ\Rightarrow 10^{-5}=10^{-4}e^{-\frac{3}{\tau}}

0.1=e3τ\Rightarrow 0.1=e^{-\frac{3}{\tau}}

Taking log on Both sides and solving-


3τ=log0.1\Rightarrow \dfrac{-3}{\tau}=log0.1


τ=31=3\Rightarrow \tau=\dfrac{-3}{-1}=3


As we know Time constant, τ=RC\tau=RC

R=τC=3105=3×105Ω\Rightarrow R=\dfrac{\tau}{C}=\dfrac{3}{10^{-5}}=3\times 10^5 \Omega



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment