(a) The energy stored in the capacitor can be calculated as follows:
"E=\\dfrac{1}{2}CV^2,""E=\\dfrac{1}{2}\\cdot72\\cdot10^{-12}\\ F\\cdot(12\\ V)^2=5.18\\cdot10^{-9}\\ J."b) Let's first calculate the charge stored on the capacitor:
"Q=CV,""Q=72\\cdot10^{-12}\\ F\\cdot12\\ V=8.64\\cdot10^{-10}\\ C."Let's find the new capacitance of the capacitor. The capacitance can be calculated as follows:
"C=\\dfrac{\\epsilon_0A}{d}."From the conditions of the question we know that the separation between the plates of the capacitor is doubled, therefore, the new capacitance will be:
"C_{new}=\\dfrac{1}{2}\\cdot\\dfrac{\\epsilon_0A}{d}=\\dfrac{1}{2}\\cdot C=\\dfrac{1}{2}\\cdot72\\cdot10^{-12}\\ F=36\\cdot10^{-12}\\ F."Finally, we can find the energy stored in the capacitor:
"E=\\dfrac{1}{2}\\dfrac{Q^2}{C}=\\dfrac{1}{2}\\cdot\\dfrac{(8.64\\cdot10^{-10}\\ C)^2}{36\\cdot10^{-12}\\ F}=1.04\\cdot10^{-8}\\ J."
Comments
Leave a comment