(i) Let's first find the time constant:
"\\tau=RC=1.3\\cdot10^3\\ \\Omega\\cdot2.0\\cdot10^{-9}\\ F=2.6\\cdot10^{-6}\\ s=2.6\\ \\mu s."The discharge current in the circuit as a function of time can be found as follows:
"I=\\dfrac{Q_0}{RC}e^{-\\dfrac{t}{\\tau}},""I=\\dfrac{5.1\\cdot10^{-6}\\ C}{2.6\\cdot10^{-6}\\ s}\\cdot e^{-\\dfrac{9.0\\ \\mu s}{2.6\\ \\mu s}}=0.06\\ A."(ii) The charge on the capacitor discharging through a resistance as a function of time can be found as follows:
"Q=Q_0e^{-\\dfrac{t}{\\tau}},""Q=5.1\\cdot10^{-6}\\ C\\cdot e^{-\\dfrac{8.0\\ \\mu s}{2.6\\ \\mu s}}=0.235\\ \\mu C."The current in the circuit is the maximum at "t=0":
"I=\\dfrac{Q_0}{RC}e^{-\\dfrac{0}{\\tau}}=\\dfrac{Q_0}{RC},""I=\\dfrac{5.1\\cdot10^{-6}\\ C}{2.6\\cdot10^{-6}\\ s}=1.96\\ A."
Comments
Leave a comment