(i) Let "C_1=C_2=C=10\\cdot10^{-6}\\space F," "U_1=U_2=U=50\\space V."
The total energy of the system of two capacitors before the plate separation is doubled:
"W=\\frac{C_1{U_1}^2}{2}+\\frac{C_2{U_2}^2}{2}=CU^2=10\\cdot10^{-6}\\cdot50^2=25\\cdot10^{-3} J."
(ii) Because the capacitors are connected in parralel, the potential differences across each capacitor are equal:
"U_1'=U_2'=U'."
The total charge of system before and after the plate separation is doubled remains constant:
"q_1+q_2=q_1'+q_2',"
"C_1U_1+C_2U_2=C_1'U_1'+C_2'U_2'."
Let "C_1'=C_1" and "C_2'=\\frac{C_2}{2}" (due to the plate separation is doubled).
Then
"C_1U_1+C_2U_2=C_1U_1'+\\frac{C_2}{2}U_2',"
"2CU=\\frac{3}{2}CU',"
"U'=\\frac{4}{3}U=\\frac{4}{3}\\cdot50=66.7\\space V."
(iii) The total energy of the system after the plate separation is doubled:
"W'=\\frac{(C_1'+C_2')U'^2}{2}=\\frac{(C+\\frac{C}{2})U'^2}{2}=\\frac{(10\\cdot10^{-6}+\\frac{10\\cdot10^{-6}}{2})66.7^2}{2}=33.3\\cdot10^{-3}\\space J."
Answer: (i) "25\\cdot10^{-3} J". (ii) 66.7 V. (iii) "33.3\\cdot10^{-3}\\space J."
Comments
Leave a comment