By considering the principles that the distribution of current in a circuit is the result of charge conservation, and the distribution of potential differences in a circuit is the result of energy conservation, derive:
(a) the combined resistance of two resistors R1 and R2 connected in series (4 marks)
(b) the combined resistance of two resistors R1 and R2 connected in parallel.
Explanations & Calculations
a)
"\\qquad\\qquad\n\\begin{aligned}\n\\small V&= \\small V_{R_1}+V_{R_2}\\\\\n&= \\small i_1R_1+i_1R_2\\\\\n&= \\small i(R_1+R_2)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small V&= \\small iR_{eq}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small iR_{eq}&= \\small i((R_1+R_2)\\\\\n\\small R_{eq}&= \\small R_1+R_2\n\\end{aligned}"
b)
"\\qquad\\qquad\n\\begin{aligned}\n\\small i_{total}&= \\small i_1+i_2\\\\\n&= \\small \\frac{V}{R_1}+\\frac{V}{R_2}\\\\\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small i_{total}&= \\small \\frac{V}{R_{eq}}\\\\\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{V}{R_{eq}}&= \\small \\frac{V}{R_1}+\\frac{V}{R_2}\\\\\n\\small \\frac{1}{R_{eq}}&= \\small \\frac{1}{R_1}+\\frac{1}{R_2}\\\\\n\\small R_{eq}&= \\small \\frac{R_1R_2}{R_1+R_2}\n\\end{aligned}"
Comments
Leave a comment