Answer to Question #153891 in Electric Circuits for Jerick

Question #153891

Five resistors are connected to a 24 V resistor as shown.

(a) What is the total resistance of the circuit?

(b) How much current flows from the battery?

(c) How much power is supplied by the battery?

(d) What is the potential difference across each resistor?

(e) What is the current through each resistor?

(f) What is the power dissipated in each resistor?


1
Expert's answer
2021-01-05T12:18:56-0500


Given that,

V=24VR1=8ΩR2=4ΩR3=5ΩR4=6ΩR5=3Ω(a)R1 and R2 are in parallel.Their combined resistance is given by,R12=R1×R2R1+R2=8×48+4=83.R12 and R3 are in series.Their combined resistance is given by,R123=R12+R3=83+5=233R123 and R4 are in series.Their combined resistance is given by,R1234=R123+R4=233+6=413R1234 and  are in parallel .Their combined resistance is given by,R12345=R1234×R5R1234+R5=413×3413+3=2.46 Hence, the total resistance of the circuit,RTotal=2.46Ω.V=24V\\ R_1=8\Omega\\ R_2=4\Omega\\ R_3=5\Omega\\ R_4=6\Omega\\ R_5=3\Omega\\ (a) R_1 \textsf{ and } R_2 \textsf{ are in parallel}. \textsf{Their combined resistance is given by,}\\ R_{12}=\frac{R_1×R_2}{R_1+R_2}=\frac{8×4}{8+4}=\frac{8}{3}.\\ R_{12} \textsf{ and } R_3 \textsf{ are in series}. \textsf{Their combined resistance is given by,}\\ R_{123}=R_{12}+R_3=\frac{8}{3}+5=\frac{23}{3}\\ R_{123} \textsf{ and } R_4 \textsf{ are in series}. \textsf{Their combined resistance is given by,}\\ R_{1234}=R_{123}+R_4=\frac{23}{3}+6=\frac{41}{3}\\ R_{1234} \textsf{ and } \textsf{ are in parallel }. \textsf{Their combined resistance is given by,}\\ R_{12345}= \frac{R_{1234}×R_5}{R_{1234}+R_5}=\frac{\frac{41}{3}×3}{\frac{41}{3}+3}=2.46\\ \textsf{ Hence, the total resistance of the circuit,} \\R_{Total}=2.46\Omega.\\ \hspace{2cm}\\ (b) From ohm’s law,V=IRI=VR=242.46I=9.76A(b) \textsf{ From ohm's law,}\\ V=IR\\ I=\frac{V}{R}=\frac{24}{2.46}\\ I=9.76A\\ \hspace{2cm}\\

(c)P=IV=9.76×24=P=234.15W(c)P=IV=9.76×24=\\P=234.15W\\\\ \hspace{2cm}\\

(d) The p.d across R1 and R2 are the same since they are connected in parallelLikewise, the p.d acrossR4 and R5arethesame.R12 is connected in series withR3andR45,hence,wedividethep.dacrossthem.R12=83ΩR45=R4×R5R4+R5=6×36+3=2ΩR3=5Ω p.d across R12=R12R12+R3+R45×V p.d across R12=8383+5+2×24=6.62V p.d across R3=R3R12+R3+R45×V p.d across R3=583+5+2×24=12.41V p.d across R45=R45R12+R3+R45×V p.d across R45=283+5+2×24=4.97V.Hence, the p.d across the different resistors are given by, p.d across R1=6.62V p.d across R2=6.62V p.d across R3=12.41V p.d across R4=4.97V p.d across R5=4.97V(d) \textsf{ The p.d across } R_1\textsf{ and } R_2 \textsf{ are the same since they are connected in parallel}\\ \textsf{Likewise, the p.d across} R_4 \textsf{ and } R_5 are the same.\\ R_{12} \textsf{ is connected in series with} R_3 and R_{45}, hence, we divide the p.d across them.\\ R_{12}=\frac{8}{3}\Omega\\\\ \hspace{2cm}\\ R_{45}= \frac{R_4×R_5}{R_4+R_5}=\frac{6×3}{6+3}=2\Omega\\\\ \hspace{2cm}\\ R_3=5\Omega\\\\ \hspace{2cm}\\ \textsf{ p.d across }R_{12} =\frac{R_{12}}{R_{12}+R_{3}+R_{45}}×V\\\\ \hspace{2cm}\\ \textsf{ p.d across }R_{12}=\frac{\frac{8}{3}}{\frac{8}{3}+5+2}×24=6.62V\\\\ \hspace{2cm}\\ \textsf{ p.d across }R_{3}=\frac{R_3}{R_{12}+R_{3}+R_{45}}×V\\\\ \hspace{2cm}\\ \textsf{ p.d across }R_{3}=\frac{5}{\frac{8}{3}+5+2}×24=12.41V\\\\ \hspace{2cm}\\ \textsf{ p.d across }R_{45}=\frac{R_{45}}{R_{12}+R_{3}+R_{45}}×V\\\\ \hspace{2cm}\\ \textsf{ p.d across }R_{45}=\frac{2}{\frac{8}{3}+5+2}×24=4.97V.\\ \textsf{Hence, the p.d across the different resistors are given by,}\\ \textsf{ p.d across }R_1=6.62V\\ \textsf{ p.d across }R_2=6.62V\\ \textsf{ p.d across }R_3=12.41V\\ \textsf{ p.d across }R_4=4.97V\\ \textsf{ p.d across }R_5=4.97V\\ \hspace{2cm}\\

(e)Since R12,R3,R45 are in series, the same current 2.46A passes through themThe current 2.46A is then divided betweenR1 and R2aswellasR4 and R5sincetheyareconnectedinparallel.IR1=R2R1+R2×I=48+4×2.46=0.82AIR2=R1R1+R2×I=88+4×2.46=1.64AIR3=2.46AIR4=R5R4+R5×I=36+3×2.46=0.82AIR5=R4R4+R5×I=66+3×2.46=1.64A(e) \textsf{Since }R_{12}, R_3, R_{45}\textsf{ are in series, the same current 2.46A passes through them}\\ \textsf{The current 2.46A is then divided between} R_1\textsf{ and }R_2 as well as R_4 \textsf{ and } R_5 since they are connected in parallel.\\ I_{R_1}= \frac{R_2}{R_1+R_2}×I=\frac{4}{8+4}×2.46=0.82A\\\\ \hspace{2cm}\\ I_{R_2}=\frac{R_1}{R_1+R_2}×I=\frac{8}{8+4}×2.46=1.64A\\\\ \hspace{2cm}\\ I_{R_3}=2.46A\\\\ \hspace{2cm}\\ I_{R_4}=\frac{R_5}{R_4+R_5}×I=\frac{3}{6+3}×2.46=0.82A\\\\ \hspace{2cm}\\ I_{R_5}=\frac{R_4}{R_4+R_5}×I=\frac{6}{6+3}×2.46=1.64A\\ \hspace{2cm}\\ (f)PR1=IR1× p.d across R1=0.82×6.62=5.43WPR2=IR2× p.d across R2=1.64×6.62=10.86WPR3=IR3× p.d across R3=2.46×12.41=30.53WPR4=IR4× p.d across R4=0.82×4.97=4.08WPR5=IR5 p.d across R5=1.64×4.97=8.15W(f) P_{R_1}=I_{R_1}×\textsf{ p.d across }R_1\\=0.82×6.62=5.43W\\\\ \hspace{2cm}\\ P_{R_2}=I_{R_2}×\textsf{ p.d across }R_2\\=1.64×6.62=10.86W\\\\ \hspace{2cm}\\ P_{R_3}=I_{R_3}×\textsf{ p.d across }R_3\\=2.46×12.41=30.53W\\\\ \hspace{2cm}\\ P_{R_4}=I_{R_4}×\textsf{ p.d across }R_4\\=0.82×4.97=4.08W\\\\ \hspace{2cm}\\ P_{R_5}=I_{R_5}\textsf{ p.d across }R_5\\=1.64×4.97=8.15W


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment