Explanations & Calculations
"\\qquad\\qquad\n\\small R_{eq} = \\small R_1+R_2+R_3\\cdots"
"\\qquad\\qquad\n\\frac{1}{R_{eq}} = \\frac{1}{R_1}+\\frac{1}{R_2}+\\frac{1}{R_3} \\cdots"
1st case: All three are series connected
"\\qquad\\qquad\n\\begin{aligned}\n\\small R_{eq} &= \\small 1.2\\Omega+1.2\\Omega+1.2\\Omega\\\\\n&= \\small \\bold{3.6\\Omega}\n\\end{aligned}"
2nd case: All three are parallel connected
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{1}{R_{eq}} &= \\small \\frac{1}{1.2\\Omega}+\\frac{1}{1.2\\Omega}+\\frac{1}{1.2\\Omega}\\\\\n&= \\small \\frac{1.2}{3} \\\\\n&=\\small \\bold{ 0.4\\Omega}\n\\end{aligned}"
3rd case: Only two of them parallel & that connected to the other one
"\\qquad\\qquad\n\\begin{aligned}\n\\small R_{eq1} &= \\small \\frac{1.2\\Omega}{2}\\\\\n&= \\small \\bold{0.6\\Omega}\n\\end{aligned}"
Comments
Leave a comment