Dependence of the coordinate (displacement relative to the equilibrium position) is given by the expression
"x(t) = A\\sin (\\omega t + \\varphi )" Where "\\omega" is a angular frequency, "\\varphi" - the initial phase and "A" - amplitude. The angular frequency in our case are
"\\omega = 2\\pi \\nu = 2\\pi \\cdot {{40} \\over \\pi }[{\\rm{Hz}}] = 80[{{\\rm{1}} \\over {\\rm{s}}}]"
Part a):
The magnitude of the force can be found by Newton's second law "\\left| {\\vec F} \\right| = m\\left| {{{{d^2}\\vec x} \\over {d{t^2}}}} \\right|" . Let's differentiate "x(t)" with respect to "t" twice
"\\dot x(t) = A\\omega \\cos (\\omega t + \\varphi )""\\ddot x(t) = - A{\\omega ^2}\\sin (\\omega t + \\varphi )" Then, we need to maximize the expression "\\left| {\\vec F} \\right| = Am{\\omega ^2}\\left| {\\sin (\\omega t + \\varphi )} \\right|"
It's obvious, that the "\\max (\\sin (\\omega t + \\varphi )) = 1" , then
"{\\left| {\\vec F} \\right|_{\\max }} = Am{\\omega ^2}"Let's calculate
"{\\left| {\\vec F} \\right|_{\\max }} = 0.2[{\\rm{m}}] \\cdot 10 \\cdot {10^{ - 3}}[{\\rm{kg}}] \\cdot {80^2}[{{\\rm{1}} \\over {{{\\rm{s}}^{\\rm{2}}}}}] = 12.8[{\\rm{N}}]"
Part b):
The maximum acceleration is (Newton's second law)
"{\\left| {\\vec a} \\right|_{\\max }} = {{{{\\left| {\\vec F} \\right|}_{\\max }}} \\over m} = A{\\omega ^2}""{\\left| {\\vec a} \\right|_{\\max }} = 0.2[{\\rm{m}}] \\cdot {(80)^2}[{{\\rm{1}} \\over {{{\\rm{s}}^{\\rm{2}}}}}] = 1280[{{\\rm{m}} \\over {{{\\rm{s}}^{\\rm{2}}}}}]"
The maximum of velocity can be found maximizing the first derivative
"\\left| {\\vec v} \\right| = A\\omega \\left| {\\cos (\\omega t + \\varphi )} \\right|" Again, "\\max (\\left| {\\cos (\\omega t + \\varphi )} \\right|) = 1" and
"{\\left| {\\vec v} \\right|_{\\max }} = A\\omega""{\\left| {\\vec v} \\right|_{\\max }} = 0.2[{\\rm{m}}] \\cdot 80[{{\\rm{1}} \\over {\\rm{s}}}] = 16[{{\\rm{m}} \\over {\\rm{s}}}]"
Part c):
We need to find the such time "t" that "x(t)=0.1[{\\rm{m}}]". Let "\\varphi =0" and then
Then
"{{x(t)} \\over A} = \\sin (\\omega t)""t = {1 \\over \\omega }\\arcsin {{x(t)} \\over A}" In our case
"t = {1 \\over {80[{{\\rm{1}} \\over {\\rm{s}}}]}}\\arcsin ({{0.1[{\\rm{m}}]} \\over {0.2[{\\rm{m}}]}}) = {1 \\over {80[{{\\rm{1}} \\over {\\rm{s}}}]}}{\\pi \\over 6} = {\\pi \\over {480}}[{\\rm{s}}]" Then the velocity at this time can be calculates using the expression for the first derivative
"\\left| {v({\\pi \\over {480}})} \\right| = 0.2[{\\rm{m}}] \\cdot 80[{{\\rm{1}} \\over {\\rm{s}}}]\\left| {\\cos (80[{{\\rm{1}} \\over {\\rm{s}}}] \\cdot {\\pi \\over {480}}{\\rm{[s]}})} \\right| = 16[{{\\rm{m}} \\over {\\rm{s}}}] \\cdot {{\\sqrt 3 } \\over 2} = 8\\sqrt 3 [{{\\rm{m}} \\over {\\rm{s}}}]" For the acceleration we use the second derivative
"\\left| {a({\\pi \\over {480}})} \\right| = \\left| { - 0.2[{\\rm{m}}] \\cdot {{80}^2}[{{\\rm{1}} \\over {{{\\rm{s}}^2}}}]} \\right|\\left| {\\sin (80[{{\\rm{1}} \\over {\\rm{s}}}] \\cdot {\\pi \\over {480}}{\\rm{[s]}})} \\right| = 1280[{{\\rm{m}} \\over {{{\\rm{s}}^2}}}] \\cdot {1 \\over 2} = 640[{{\\rm{m}} \\over {\\rm{s}}}]"
Comments
Leave a comment