Dependence of the coordinate (displacement relative to the equilibrium position) is given by the expression
x ( t ) = A sin  ( ω t + φ ) x(t) = A\sin (\omega t + \varphi ) x ( t ) = A sin ( ω t + φ )  Where ω \omega ω φ \varphi φ A A A 
ω = 2 π ν = 2 π ⋅ 40 π [ H z ] = 80 [ 1 s ] \omega  = 2\pi \nu  = 2\pi  \cdot {{40} \over \pi }[{\rm{Hz}}] = 80[{{\rm{1}} \over {\rm{s}}}] ω = 2 π ν = 2 π ⋅ π 40  [ Hz ] = 80 [ s 1  ] 
Part a):
The magnitude of the force can be found by Newton's second law ∣ F ⃗ ∣ = m ∣ d 2 x ⃗ d t 2 ∣ \left| {\vec F} \right| = m\left| {{{{d^2}\vec x} \over {d{t^2}}}} \right| ∣ ∣  F ∣ ∣  = m ∣ ∣  d t 2 d 2 x  ∣ ∣  x ( t ) x(t) x ( t ) t t t 
x ˙ ( t ) = A ω cos  ( ω t + φ ) \dot x(t) = A\omega \cos (\omega t + \varphi ) x ˙ ( t ) = A ω cos ( ω t + φ ) x ¨ ( t ) = − A ω 2 sin  ( ω t + φ ) \ddot x(t) =  - A{\omega ^2}\sin (\omega t + \varphi ) x ¨ ( t ) = − A ω 2 sin ( ω t + φ )  Then, we need to maximize the expression ∣ F ⃗ ∣ = A m ω 2 ∣ sin  ( ω t + φ ) ∣ \left| {\vec F} \right| = Am{\omega ^2}\left| {\sin (\omega t + \varphi )} \right| ∣ ∣  F ∣ ∣  = A m ω 2 ∣ sin ( ω t + φ ) ∣ 
It's obvious, that the max  ( sin  ( ω t + φ ) ) = 1 \max (\sin (\omega t + \varphi )) = 1 max ( sin ( ω t + φ )) = 1 
∣ F ⃗ ∣ max  = A m ω 2 {\left| {\vec F} \right|_{\max }} = Am{\omega ^2} ∣ ∣  F ∣ ∣  m a x  = A m ω 2 Let's calculate
 
∣ F ⃗ ∣ max  = 0.2 [ m ] ⋅ 10 ⋅ 1 0 − 3 [ k g ] ⋅ 8 0 2 [ 1 s 2 ] = 12.8 [ N ] {\left| {\vec F} \right|_{\max }} = 0.2[{\rm{m}}] \cdot 10 \cdot {10^{ - 3}}[{\rm{kg}}] \cdot {80^2}[{{\rm{1}} \over {{{\rm{s}}^{\rm{2}}}}}] = 12.8[{\rm{N}}] ∣ ∣  F ∣ ∣  m a x  = 0.2 [ m ] ⋅ 10 ⋅ 1 0 − 3 [ kg ] ⋅ 8 0 2 [ s 2 1  ] = 12.8 [ N ]  
Part b):
The maximum acceleration is (Newton's second law)
∣ a ⃗ ∣ max  = ∣ F ⃗ ∣ max  m = A ω 2 {\left| {\vec a} \right|_{\max }} = {{{{\left| {\vec F} \right|}_{\max }}} \over m} = A{\omega ^2} ∣ a ∣ m a x  = m ∣ ∣  F ∣ ∣  m a x   = A ω 2 ∣ a ⃗ ∣ max  = 0.2 [ m ] ⋅ ( 80 ) 2 [ 1 s 2 ] = 1280 [ m s 2 ] {\left| {\vec a} \right|_{\max }} = 0.2[{\rm{m}}] \cdot {(80)^2}[{{\rm{1}} \over {{{\rm{s}}^{\rm{2}}}}}] = 1280[{{\rm{m}} \over {{{\rm{s}}^{\rm{2}}}}}] ∣ a ∣ m a x  = 0.2 [ m ] ⋅ ( 80 ) 2 [ s 2 1  ] = 1280 [ s 2 m  ] 
 The maximum of velocity can be found maximizing the first derivative
∣ v ⃗ ∣ = A ω ∣ cos  ( ω t + φ ) ∣ \left| {\vec v} \right| = A\omega \left| {\cos (\omega t + \varphi )} \right| ∣ v ∣ = A ω ∣ cos ( ω t + φ ) ∣  Again, max  ( ∣ cos  ( ω t + φ ) ∣ ) = 1 \max (\left| {\cos (\omega t + \varphi )} \right|) = 1 max ( ∣ cos ( ω t + φ ) ∣ ) = 1 
∣ v ⃗ ∣ max  = A ω {\left| {\vec v} \right|_{\max }} = A\omega ∣ v ∣ m a x  = A ω ∣ v ⃗ ∣ max  = 0.2 [ m ] ⋅ 80 [ 1 s ] = 16 [ m s ] {\left| {\vec v} \right|_{\max }} = 0.2[{\rm{m}}] \cdot 80[{{\rm{1}} \over {\rm{s}}}] = 16[{{\rm{m}} \over {\rm{s}}}] ∣ v ∣ m a x  = 0.2 [ m ] ⋅ 80 [ s 1  ] = 16 [ s m  ] 
Part c):
We need to find the such time t t t x ( t ) = 0.1 [ m ] x(t)=0.1[{\rm{m}}] x ( t ) = 0.1 [ m ] φ = 0 \varphi =0 φ = 0 
Then 
x ( t ) A = sin  ( ω t ) {{x(t)} \over A} = \sin (\omega t) A x ( t )  = sin ( ω t ) t = 1 ω arcsin  x ( t ) A t = {1 \over \omega }\arcsin {{x(t)} \over A} t = ω 1  arcsin A x ( t )   In our case
t = 1 80 [ 1 s ] arcsin  ( 0.1 [ m ] 0.2 [ m ] ) = 1 80 [ 1 s ] π 6 = π 480 [ s ] t = {1 \over {80[{{\rm{1}} \over {\rm{s}}}]}}\arcsin ({{0.1[{\rm{m}}]} \over {0.2[{\rm{m}}]}}) = {1 \over {80[{{\rm{1}} \over {\rm{s}}}]}}{\pi  \over 6} = {\pi  \over {480}}[{\rm{s}}] t = 80 [ s 1  ] 1  arcsin ( 0.2 [ m ] 0.1 [ m ]  ) = 80 [ s 1  ] 1  6 π  = 480 π  [ s ]  Then the velocity at this time can be calculates using the expression for the first derivative
∣ v ( π 480 ) ∣ = 0.2 [ m ] ⋅ 80 [ 1 s ] ∣ cos  ( 80 [ 1 s ] ⋅ π 480 [ s ] ) ∣ = 16 [ m s ] ⋅ 3 2 = 8 3 [ m s ] \left| {v({\pi  \over {480}})} \right| = 0.2[{\rm{m}}] \cdot 80[{{\rm{1}} \over {\rm{s}}}]\left| {\cos (80[{{\rm{1}} \over {\rm{s}}}] \cdot {\pi  \over {480}}{\rm{[s]}})} \right| = 16[{{\rm{m}} \over {\rm{s}}}] \cdot {{\sqrt 3 } \over 2} = 8\sqrt 3 [{{\rm{m}} \over {\rm{s}}}] ∣ ∣  v ( 480 π  ) ∣ ∣  = 0.2 [ m ] ⋅ 80 [ s 1  ] ∣ ∣  cos ( 80 [ s 1  ] ⋅ 480 π  [ s ] ) ∣ ∣  = 16 [ s m  ] ⋅ 2 3   = 8 3  [ s m  ]  For the acceleration we use the second derivative
∣ a ( π 480 ) ∣ = ∣ − 0.2 [ m ] ⋅ 80 2 [ 1 s 2 ] ∣ ∣ sin  ( 80 [ 1 s ] ⋅ π 480 [ s ] ) ∣ = 1280 [ m s 2 ] ⋅ 1 2 = 640 [ m s ] \left| {a({\pi  \over {480}})} \right| = \left| { - 0.2[{\rm{m}}] \cdot {{80}^2}[{{\rm{1}} \over {{{\rm{s}}^2}}}]} \right|\left| {\sin (80[{{\rm{1}} \over {\rm{s}}}] \cdot {\pi  \over {480}}{\rm{[s]}})} \right| = 1280[{{\rm{m}} \over {{{\rm{s}}^2}}}] \cdot {1 \over 2} = 640[{{\rm{m}} \over {\rm{s}}}] ∣ ∣  a ( 480 π  ) ∣ ∣  = ∣ ∣  − 0.2 [ m ] ⋅ 80 2 [ s 2 1  ] ∣ ∣  ∣ ∣  sin ( 80 [ s 1  ] ⋅ 480 π  [ s ] ) ∣ ∣  = 1280 [ s 2 m  ] ⋅ 2 1  = 640 [ s m  ]  
Comments