"\\omega=10\\ rad\\ sec^{-1}\\\\m=0.1\\ kg\\\\v_{bo}=10\\ m\\ sec^{-1}"
distance of observer from centre at that instant = 10 - 8 = 2m
relative velocity of ball wrt the observer on ground = velocity of ball wrt observer at O + velocity of observer wrt ground
So,
"\\overset{\\to}v_{bg} =\\overset{\\to}v_{bo}+\\overset{\\to}v_{og}"
"v_{bo}=10\\ m\\ sec^{-1}\\\\" anticlockwise
"v_{og}=angular\\ velocity\\times 2=20 \\\\" clockwise
so,
Relative velocity of ball wrt ground=
"v_{bg}=20-10=10\\ m\\ sec^{-1}\\ clockwise"
Centrifugal force on the ball =
"\\frac{m_{ball}v^2_{bo}}r=\\frac{0.1\\times10^2}{8}=1.25\\ N"Coriolis force =
"=2m(v_{bo}\\times \\omega)\\\\=2\\times0.1(10\\times10sin 90\\degree)\\\\=20\\ N""\\because \\ (angle\\ between\\ v\\ and\\ \\omega\\ is\\ 90\\degree)"
Comments
Leave a comment