Part a): Let's choose the axis x along the trajectory of the ball and let positive direction be the same as the initial direction of the ball. Then, according to the impulse conservation
"\\vec p' = \\vec p + \\Delta \\vec p" where "\\vec p'" -final impulse of the ball, "{\\vec p}" - initial impulse of the ball and "\\Delta \\vec p" is the impulse delivered to the ball. Then
"\\Delta \\vec p = \\vec p' - \\vec p" Let's use that "\\vec p = m\\vec v" and project the velocities to the x-axis
"\\Delta {p_x} = m({v_x}' - {v_x})" And let's do the calculations
"\\Delta {p_x} = 0.145[{\\text{kg}}]( - 50[\\frac{{\\text{m}}}{{\\text{s}}}] - 40[\\frac{{\\text{m}}}{{\\text{s}}}]) = - 13.05[\\frac{{{\\text{kg}} \\cdot {\\text{m}}}}{{\\text{s}}}]" Minus sign in our reference system means that the direction of the "\\Delta \\vec p" is "to the pitcher or in direction of the ball after hit".
Part b): We can use the Newton's second law
"\\vec F = \\frac{{d\\vec p}}{{dt}}"Let's approximate differentials by the finite differences, then for average force we can use
"\\left\\langle {\\vec F} \\right\\rangle = \\frac{{\\Delta \\vec p}}{{\\Delta t}}"Again, project to the x-axis and we get
"\\left\\langle {{F_x}} \\right\\rangle = \\frac{{\\Delta {p_x}}}{{\\Delta t}} = \\frac{{ - 13.05[\\frac{{{\\text{kg}} \\cdot {\\text{m}}}}{{\\text{s}}}]}}{{2 \\cdot {{10}^{ - 3}}[{\\text{s}}]}} = - 6525[{\\text{N}}]" The meaning of the minus sign is the same.
Part c): Use Newton's second law again in the form
"\\vec F = \\frac{{d\\vec p}}{{dt}} = m\\frac{{d\\vec v}}{{dt}} = m\\vec a" Averaging and expressing acceleration we get
"\\left\\langle {\\vec a} \\right\\rangle = \\frac{{\\left\\langle {\\vec F} \\right\\rangle }}{m}" Thus
"\\left\\langle {{a_x}} \\right\\rangle = \\frac{{\\left\\langle {{F_x}} \\right\\rangle }}{m} = \\frac{{ - 6525[{\\text{N}}]}}{{0.145[{\\text{kg}}]}} = - 45000[\\frac{{\\text{m}}}{{{{\\text{s}}^{\\text{2}}}}}]"
Comments
Dear Jake, You're welcome. We are glad to be helpful. If you liked our service please press like-button beside answer field. Thank you!
Very helpful
Leave a comment