2019-09-08T10:04:10-04:00
A body of mass (m) falls from rest through a medium which exact a frictional drag force (bv) proportional to a applied force (f).1. Find it's velocity in terms of time t 2. Find it's terminal velocity
1
2019-09-09T11:20:04-0400
m a = m d v d t = m g − b v + f ma=m\frac{dv}{dt}=mg-bv+f ma = m d t d v = m g − b v + f
d v d t = g − b m v + f m \frac{dv}{dt}=g-\frac{b}{m}v+\frac{f}{m} d t d v = g − m b v + m f
b d t = d v m g b + f b − v bdt=\frac{dv}{\frac{mg}{b}+\frac{f}{b}-v} b d t = b m g + b f − v d v
v ( t ) = m g + f b + c exp ( − b t ) v(t)=\frac{mg+f}{b}+c\exp{(-bt)} v ( t ) = b m g + f + c exp ( − b t )
v ( 0 ) = 0 = m g + f b + c v(0)=0=\frac{mg+f}{b}+c v ( 0 ) = 0 = b m g + f + c So,
v ( t ) = m g + f b ( 1 − exp ( − b t ) ) v(t)=\frac{mg+f}{b}(1-\exp{(-bt)}) v ( t ) = b m g + f ( 1 − exp ( − b t ) ) Terminal velocity:
v ( ∞ ) = m g + f b v(\infty)=\frac{mg+f}{b} v ( ∞ ) = b m g + f
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Physics
Comments