2019-09-07T07:51:10-04:00
A particle of mass m is subject to a force f(X)= Kx. the initial position is 0 and the initial speed is V. Find x(t)
1
2019-09-09T11:06:47-0400
m a = m d 2 x d t 2 = K x ma=m\frac{d^2x}{dt^2}=Kx ma = m d t 2 d 2 x = K x
x = e λ t x=e^{\lambda t} x = e λ t We have
λ 2 = K m → λ 1 = K m , λ 2 = − K m \lambda^2=\frac{K}{m}\to \lambda_1=\sqrt{\frac{K}{m}},\lambda_2=-\sqrt{\frac{K}{m}} λ 2 = m K → λ 1 = m K , λ 2 = − m K
x ( t ) = c 1 exp ( K m t ) + c 2 exp ( − K m t ) x(t)=c_1 \exp{\left(\sqrt{\frac{K}{m}}t\right)}+c_2 \exp{\left(-\sqrt{\frac{K}{m}}t\right)} x ( t ) = c 1 exp ( m K t ) + c 2 exp ( − m K t )
x ( 0 ) = 0 = c 1 + c 2 → c 1 = − c 2 x(0)=0=c_1 +c_2 \to c_1 =-c_2 x ( 0 ) = 0 = c 1 + c 2 → c 1 = − c 2
v ( t ) = c 1 K m ( exp ( K m t ) + exp ( − K m t ) ) v(t)=c_1 \sqrt{\frac{K}{m}}\left(\exp{\left(\sqrt{\frac{K}{m}}t\right)}+\exp{\left(-\sqrt{\frac{K}{m}}t\right)}\right) v ( t ) = c 1 m K ( exp ( m K t ) + exp ( − m K t ) )
v ( 0 ) = v = c 1 K m ( 1 + 1 ) v(0)=v=c_1 \sqrt{\frac{K}{m}}\left(1+1\right) v ( 0 ) = v = c 1 m K ( 1 + 1 ) Thus,
x ( t ) = 0.5 v m K ( exp ( K m t ) − exp ( − K m t ) ) x(t)=0.5v\sqrt{\frac{m}{K}}\left(\exp{\left(\sqrt{\frac{K}{m}}t\right)}-\exp{\left(-\sqrt{\frac{K}{m}}t\right)}\right) x ( t ) = 0.5 v K m ( exp ( m K t ) − exp ( − m K t ) )
x ( t ) = v m K sh ( K m t ) x(t)=v\sqrt{\frac{m}{K}}\sh{\left(\sqrt{\frac{K}{m}}t\right)} x ( t ) = v K m sh ( m K t )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Physics
Comments