2019-09-01T05:23:10-04:00
x=log bc base a, y=log ca base b,z=log ab base c prove that x+y+z=xyz-2
1
2019-09-02T09:26:33-0400
Let
x = log a ( b c ) , y = log b ( a c ) , z = log c ( a b ) x=\log_a(bc), \; y=\log_b(ac),\: z=\log_c(ab) x = log a ( b c ) , y = log b ( a c ) , z = log c ( ab ) We put
log a ( b ) = u , log a ( c ) = v , log b ( c ) = w \log_a(b)=u,\:\log_a(c)=v, \; \log_b(c)=w log a ( b ) = u , log a ( c ) = v , log b ( c ) = w Thus
x ∗ y ∗ z = [ u + v ] ∗ [ 1 / u + w ] ∗ [ 1 / v + 1 / w ] x*y*z=[u+v]*[1/u+w]*[1/v+1/w] x ∗ y ∗ z = [ u + v ] ∗ [ 1/ u + w ] ∗ [ 1/ v + 1/ w ]
= [ 1 + v / u + u w + v w ] ∗ [ 1 / v + 1 / w ] =[1+v/u+uw+vw]*[1/v+1/w] = [ 1 + v / u + u w + v w ] ∗ [ 1/ v + 1/ w ]
= 1 / v + 1 / u + u w / v + w + 1 / w + v / ( u w ) + u + v =1/v+1/u+uw/v+w+1/w+v/(uw)+u+v = 1/ v + 1/ u + u w / v + w + 1/ w + v / ( u w ) + u + v Since
log a ( b ) ∗ log b ( c ) = log a ( c ) \log_a(b)*\log_b(c)=\log_a(c) log a ( b ) ∗ log b ( c ) = log a ( c ) we get
v / ( u w ) = 1 v/(uw)=1 v / ( u w ) = 1 So
x ∗ y ∗ z = 1 / v + v + 1 / u + u + 1 / w + w + 2 x*y*z=1/v+v+1/u+u+1/w+w+2 x ∗ y ∗ z = 1/ v + v + 1/ u + u + 1/ w + w + 2 Also we have
x + y + z = [ u + v ] + [ 1 / u + w ] + [ 1 / v + 1 / w ] = 1 / v + v + 1 / u + u + 1 / w + w x+y+z=[u+v]+[1/u+w]+[1/v+1/w]=1/v+v+1/u+u+1/w+w x + y + z = [ u + v ] + [ 1/ u + w ] + [ 1/ v + 1/ w ] = 1/ v + v + 1/ u + u + 1/ w + w Finally
x + y + z = x ∗ y ∗ z − 2 x+y+z=x*y*z-2 x + y + z = x ∗ y ∗ z − 2
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Physics
Comments