Answer to Question #93602 in Classical Mechanics for Rinku Rai
x=log bc base a, y=log ca base b,z=log ab base c prove that x+y+z=xyz-2
1
2019-09-02T09:26:33-0400
Let
"x=\\log_a(bc), \\; y=\\log_b(ac),\\: z=\\log_c(ab)"We put
"\\log_a(b)=u,\\:\\log_a(c)=v, \\; \\log_b(c)=w"Thus
"x*y*z=[u+v]*[1\/u+w]*[1\/v+1\/w]"
"=[1+v\/u+uw+vw]*[1\/v+1\/w]"
"=1\/v+1\/u+uw\/v+w+1\/w+v\/(uw)+u+v"Since
"\\log_a(b)*\\log_b(c)=\\log_a(c)"we get
"v\/(uw)=1"So
"x*y*z=1\/v+v+1\/u+u+1\/w+w+2"Also we have
"x+y+z=[u+v]+[1\/u+w]+[1\/v+1\/w]=1\/v+v+1\/u+u+1\/w+w"Finally
"x+y+z=x*y*z-2"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Learn more about our help with Assignments:
Physics
Comments
Leave a comment