Question #93602
x=log bc base a, y=log ca base b,z=log ab base c prove that x+y+z=xyz-2
1
Expert's answer
2019-09-02T09:26:33-0400

Let


x=loga(bc),  y=logb(ac),z=logc(ab)x=\log_a(bc), \; y=\log_b(ac),\: z=\log_c(ab)

We put

loga(b)=u,loga(c)=v,  logb(c)=w\log_a(b)=u,\:\log_a(c)=v, \; \log_b(c)=w

Thus


xyz=[u+v][1/u+w][1/v+1/w]x*y*z=[u+v]*[1/u+w]*[1/v+1/w]

=[1+v/u+uw+vw][1/v+1/w]=[1+v/u+uw+vw]*[1/v+1/w]

=1/v+1/u+uw/v+w+1/w+v/(uw)+u+v=1/v+1/u+uw/v+w+1/w+v/(uw)+u+v

Since


loga(b)logb(c)=loga(c)\log_a(b)*\log_b(c)=\log_a(c)

we get


v/(uw)=1v/(uw)=1

So


xyz=1/v+v+1/u+u+1/w+w+2x*y*z=1/v+v+1/u+u+1/w+w+2

Also we have


x+y+z=[u+v]+[1/u+w]+[1/v+1/w]=1/v+v+1/u+u+1/w+wx+y+z=[u+v]+[1/u+w]+[1/v+1/w]=1/v+v+1/u+u+1/w+w

Finally

x+y+z=xyz2x+y+z=x*y*z-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS