The position is given by:
"X_{f}=X_{o}+V_{ox}t+\\frac{1}{2}a_{x}t^{2}"
Where
"X_{i}=0m"
"X_{f}=300m"
"V_{ox}=10\\frac{m}{s}"
"a_{x}"
"t=5.00s"
Expression for acceleration
"X_{f}=X_{o}+V_{ox}t+\\frac{1}{2}a_{x}t^{2}\\\\\nX_{f}-X_{o}-V_{ox}t=\\frac{1}{2}a_{x}t^{2}\\\\\n\\frac{1}{2}a_{x}t^{2}=X_{f}-X_{o}-V_{ox}t\\\\\na_{x}=\\frac{2(X_{f}-X_{o}-V_{ox)t}}{t^{2}}"
Numerically evaluating
"a_{x}=\\frac{2(300m-0m-10\\frac{m}{s}*5.00s}{(5.0s)^{2}}"
FInally
"a_{x}=20\\frac{m}{s^{2}}"
The acceleration of the car is
"\\boxed{a_{x}=20\\frac{m}{s^{2}}}"
Comments
Leave a comment