The given information is
The initial velocity is V ( o ) = 300 m / s V_{(o)}=300\;\text{m}/\text{s} V ( o ) = 300 m / s The initial distance traveled is d ( i ) = 500 mm d_{(i)}=500\;\text{mm} d ( i ) = 500 mm The final distance traveled is d ( f ) = 250 mm d_{(f)}=250\;\text{mm} d ( f ) = 250 mm Converting the distances to meters.
Equivalence millimeters to meters. 1 m = 1000 mm 1\;\text{m}=1000\;\text{mm} 1 m = 1000 mm
Multiplying by the conversion factor.
d ( i ) = 500 mm × 1 m 1000 mm = 0.5 m d ( f ) = 250 mm × 1 m 1000 mm = 0.25 m d_{(i)}=500\;\text{mm}\times \dfrac{1\;\text{m}}{1000\;\text{mm}}=0.5\;\text{m}\\
d_{(f)}=250\;\text{mm}\times \dfrac{1\;\text{m}}{1000\;\text{mm}}=0.25\;\text{m}\\ d ( i ) = 500 mm × 1000 mm 1 m = 0.5 m d ( f ) = 250 mm × 1000 mm 1 m = 0.25 m
The acceleration that the bullet undergoes in the first impact is
a = V ( f ) 2 − V ( i ) 2 2 d ( i ) a=\dfrac{V_{(f)}^{2}-V_{(i)}^{2}}{2\;d_{(i)}} a = 2 d ( i ) V ( f ) 2 − V ( i ) 2
In which.
V ( i ) V_{(i)} V ( i ) is the initial velocity.
V ( f ) V_{(f)} V ( f ) is the final velocity.
d ( i ) d_{(i)} d ( i ) is the distance
Evaluating numerically.
a = V ( f ) 2 − V ( i ) 2 2 d ( i ) a = ( 0 m / s ) 2 − ( 300 m / s 2 2 × 0.5 m a = − 90 , 000 m / s 2 a=\dfrac{V_{(f)}^{2}-V_{(i)}^{2}}{2\;d_{(i)}}\\
a=\dfrac{(0\;\text{m}/\text{s})^{2}-(300\;\text{m}/\text{s}^{2}}{2\times 0.5\;\text{m}}\\
a=-90,000\;\text{m}/\text{s}^{2} a = 2 d ( i ) V ( f ) 2 − V ( i ) 2 a = 2 × 0.5 m ( 0 m / s ) 2 − ( 300 m / s 2 a = − 90 , 000 m / s 2
Now, for the second shot, the final velocity is given by
V ( f ) 2 = V ( i ) 2 + 2 a d ( f ) V_{(f)}^{2}=V_{(i)}^{2}+2\;a\;d_{(f)} V ( f ) 2 = V ( i ) 2 + 2 a d ( f )
\\
Where.
In which.
V ( i ) V_{(i)} V ( i ) is the initial velocity.
V ( f ) V_{(f)} V ( f ) is the final velocity.
d ( f ) d_{(f)} d ( f ) is the distance
Evaluating numerically.
V ( f ) 2 = V ( i ) 2 + 2 a d ( f ) V ( f ) = V ( i ) 2 + 2 a d ( f ) V ( f ) = ( 300 m / s ) 2 + 2 × − 90 , 000 ; m / s 2 × 0.25 m V ( f ) = 45 , 000 m 2 / s 2 V_{(f)}^{2}=V_{(i)}^{2}+2\;a\;d_{(f)}\\
V_{(f)}=\sqrt{V_{(i)}^{2}+2\;a\;d_{(f)}}\\
V_{(f)}=\sqrt{(300\;\text{m}/\text{s})^{2}+2\times -90,000;\text{m}/\text{s}^{2}\times 0.25\;\text{m}}\\
V_{(f)}=\sqrt{ 45,000\text{m}^{2}/\text{s}^{2}}\\ V ( f ) 2 = V ( i ) 2 + 2 a d ( f ) V ( f ) = V ( i ) 2 + 2 a d ( f ) V ( f ) = ( 300 m / s ) 2 + 2 × − 90 , 000 ; m / s 2 × 0.25 m V ( f ) = 45 , 000 m 2 / s 2
V ( f ) = 212 m / s V_{(f)}=212\;\text{m}/\text{s} V ( f ) = 212 m / s
Answer.
The velocity with which it emerges from the second target is V ( f ) = 212 m / s \displaystyle \color{red}{\boxed{V_{(f)}=212\;\text{m}/\text{s}}} V ( f ) = 212 m / s
Comments
Thnks a lot
Leave a comment