Answer to Question #212364 in Classical Mechanics for bishal

Question #212364

1.            A bullet moving at the rate of 300 m/s is fired into a thick target and penetrates up to 500 mm. If it is fired into a 250 mm thick target, find the velocity of emergence. Take the resistance to be uniform in both the cases.



1
Expert's answer
2021-07-01T09:34:20-0400

The given information is

  • The initial velocity is V(o)=300  m/sV_{(o)}=300\;\text{m}/\text{s}
  • The initial distance traveled is d(i)=500  mmd_{(i)}=500\;\text{mm}
  • The final distance traveled is d(f)=250  mmd_{(f)}=250\;\text{mm}

Converting the distances to meters.

Equivalence millimeters to meters. 1  m=1000  mm1\;\text{m}=1000\;\text{mm}

Multiplying by the conversion factor.

d(i)=500  mm×1  m1000  mm=0.5  md(f)=250  mm×1  m1000  mm=0.25  md_{(i)}=500\;\text{mm}\times \dfrac{1\;\text{m}}{1000\;\text{mm}}=0.5\;\text{m}\\ d_{(f)}=250\;\text{mm}\times \dfrac{1\;\text{m}}{1000\;\text{mm}}=0.25\;\text{m}\\


The acceleration that the bullet undergoes in the first impact is

a=V(f)2V(i)22  d(i)a=\dfrac{V_{(f)}^{2}-V_{(i)}^{2}}{2\;d_{(i)}}

In which.

V(i)V_{(i)} is the initial velocity.

V(f)V_{(f)} is the final velocity.

d(i)d_{(i)} is the distance


Evaluating numerically.

a=V(f)2V(i)22  d(i)a=(0  m/s)2(300  m/s22×0.5  ma=90,000  m/s2a=\dfrac{V_{(f)}^{2}-V_{(i)}^{2}}{2\;d_{(i)}}\\ a=\dfrac{(0\;\text{m}/\text{s})^{2}-(300\;\text{m}/\text{s}^{2}}{2\times 0.5\;\text{m}}\\ a=-90,000\;\text{m}/\text{s}^{2}


Now, for the second shot, the final velocity is given by

V(f)2=V(i)2+2  a  d(f)V_{(f)}^{2}=V_{(i)}^{2}+2\;a\;d_{(f)}

\\

Where.

In which.

V(i)V_{(i)} is the initial velocity.

V(f)V_{(f)} is the final velocity.

d(f)d_{(f)} is the distance


Evaluating numerically.

V(f)2=V(i)2+2  a  d(f)V(f)=V(i)2+2  a  d(f)V(f)=(300  m/s)2+2×90,000;m/s2×0.25  mV(f)=45,000m2/s2V_{(f)}^{2}=V_{(i)}^{2}+2\;a\;d_{(f)}\\ V_{(f)}=\sqrt{V_{(i)}^{2}+2\;a\;d_{(f)}}\\ V_{(f)}=\sqrt{(300\;\text{m}/\text{s})^{2}+2\times -90,000;\text{m}/\text{s}^{2}\times 0.25\;\text{m}}\\ V_{(f)}=\sqrt{ 45,000\text{m}^{2}/\text{s}^{2}}\\

V(f)=212  m/sV_{(f)}=212\;\text{m}/\text{s}


Answer.

The velocity with which it emerges from the second target is V(f)=212  m/s\displaystyle \color{red}{\boxed{V_{(f)}=212\;\text{m}/\text{s}}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Anmona Das
19.07.22, 17:10

Thnks a lot

Leave a comment