Question #186231

A cylindrical tank of radius 3 ft and height 10 ft stands on a flatform 50 ft high. How much work will be done in filling the tank by pumping water from the ground level?


1
Expert's answer
2021-04-29T07:28:08-0400

Find the volume of the tank:\text{Find the volume of the tank:}

V=πr2hV = \pi r^2h

r=3ft=0.9144mr = 3ft= 0.9144 m

h=10ft=3.048mh=10ft = 3.048m

V=π0.914423.0488m3V= \pi*0.9144^2*3.048\approx 8m^3

Let’s calculate the water mass in the tank\text{Let's calculate the water mass in the tank}

m=ρV=10008=8000kgm=\rho V= 1000*8 =8000kg

Calculate the potential energy of the water in the tank\text{Calculate the potential energy of the water in the tank}

Ep=mghcE_p=mgh_c

hcheight of the center of gravity of the tank h_c -\text{height of the center of gravity of the tank }

relative to the ground level\text{relative to the ground level}

hc=50+10/2=55ft=16.764mh_c= 50+10/2=55ft=16.764m

Ep=mghc=80009.816.764=1314 297.6JE_p=mgh_c=8000*9.8*16.764=1314 297.6J

the potential energy of the same mass of water\text{the potential energy of the same mass of water}

at ground level will be 0 since the height is 0\text{at ground level will be 0 since the height is 0}

Ep0=0E_{p0}=0

W=ΔP=1314 297.6JW =\Delta P= 1314 297.6J

Answer: 1314297.6 J\text{Answer: } 1314 297.6\ J






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS