As per the given question,
mass of block = m
Spring constant = K
Damping force"F(v) \\propto v"
"\\Rightarrow F(v) =\\gamma v"
"-m\\frac{d^2x}{dt^2}=\\gamma v"
"\\Rightarrow m\\frac{d^2x}{dt^2}+\\gamma v=0"
"\\Rightarrow \\frac{d^2x}{dt^2}+\\frac{\\gamma v}{m}=0"
"\\Rightarrow \\frac{dv}{dt}+\\frac{\\gamma}{m}v=0"
Here, "\\frac{m}{\\gamma}=\\tau" which is called relaxation time.
"\\Rightarrow \\frac{dv}{dt}+\\frac{1}{\\tau}v=0"
Taking the integration
"\\Rightarrow \\int\\frac{dv}{v}=-\\int\\frac{dt}{\\tau}"
"\\Rightarrow \\ln v=\\frac{-t}{\\tau}+c"
"\\Rightarrow \\ln v=\\frac{-t}{\\tau}+c"
at t =0,
"C=v_o"
"\\Rightarrow v=e^{\\frac{-t}{\\tau}+v_o}"
We know that,
"v=\\frac{dx}{dt}"
"\\Rightarrow dx = v dt"
"\\Rightarrow \\int dx=\\int e^{\\frac{-t}{\\tau}+v_o}dt"
"x=\\frac{e^{\\frac{-t}{\\tau}+v_o}}{\\frac{-t}{\\tau}+v_o}+C_1"
Comments
Leave a comment