inclined track: \text {inclined track:} inclined track:
F 1 = m a 1 F_1=ma_1 F 1 = m a 1
a 1 = g ( sin θ − μ cos θ ) a_1=g(\sin \theta -\mu \cos \theta ) a 1 = g ( sin θ − μ cos θ )
a 1 = 9.8 ( s i n 7. 5 0 − 0.06 ∗ c o s 7. 5 0 ) = 0.7 a_1 = 9.8(sin7.5^0-0.06*cos 7.5^0) = 0.7 a 1 = 9.8 ( s in 7. 5 0 − 0.06 ∗ cos 7. 5 0 ) = 0.7
s = V 0 t 1 + a 1 t 1 2 2 ; V 0 = 0 s = V_0t_1+\frac{a_1t_1^2}{2};V_0=0 s = V 0 t 1 + 2 a 1 t 1 2 ; V 0 = 0
t 1 = 2 s a 1 = 2 ∗ 40 0.7 = 10.7 t_1 = \sqrt{\frac{2s}{a_1}}=\sqrt{\frac{2*40}{0.7}}=10.7 t 1 = a 1 2 s = 0.7 2 ∗ 40 = 10.7
V 1 = V 0 + a t 1 V_1 = V_0+at_1 V 1 = V 0 + a t 1
V 1 = 0.7 ∗ 10.7 = 7.49 V_1=0.7*10.7 =7.49 V 1 = 0.7 ∗ 10.7 = 7.49
horizontal track: \text{horizontal track:} horizontal track:
F 2 = m a 2 F_2=ma_2 F 2 = m a 2
a 2 = μ ∗ g a_2= \mu*g a 2 = μ ∗ g
V 2 = V 0 − a t 2 V_2= V_0-at_2 V 2 = V 0 − a t 2
V 2 = 0 stop motion V_2=0 \text{ stop motion} V 2 = 0 stop motion
V 0 = 7.49 speed at the end inclined track V_0 = 7.49 \text{ speed at the end inclined track} V 0 = 7.49 speed at the end inclined track
t 2 = V 0 a 2 = V 0 μ ∗ g = 7.49 9.8 ∗ 0.06 = 12.7 t_2= \frac{V_0}{a_2}=\frac{V_0}{\mu*g}=\frac{7.49}{9.8*0.06}=12.7 t 2 = a 2 V 0 = μ ∗ g V 0 = 9.8 ∗ 0.06 7.49 = 12.7
All time: \text{All time:} All time:
t = t 1 + t 2 = 12.7 + 10.7 = 23.4 t = t_1+t_2 = 12.7+10.7 = 23.4 t = t 1 + t 2 = 12.7 + 10.7 = 23.4
Answer:total time 23.4 seconds
Comments
Leave a comment