If cos(A-B) = cos 15° and cos(A+B)= cos 75° , the values of A and B. Hence without using a calculator and by using the sum and difference formula, show that cos 15° - cos 75° = 2 sin 45° sin 30°
A=45o B=30oA = 45^o \space \space B=30^oA=45o B=30o
−{cos(A−B)=cosAcosB+sinAsinB=cos15ocos(A+B)=cosAcosB−sinAsinB=cos75o-\begin{cases} cos(A-B) = cosAcosB+sinAsinB=cos15^o \\ cos(A+B) = cosAcosB-sinAsinB=cos75^o \end{cases}−{cos(A−B)=cosAcosB+sinAsinB=cos15ocos(A+B)=cosAcosB−sinAsinB=cos75o
cos15o−cos75o=2sinAsinB=2sin45osin30ocos15^o-cos75^o=2sinAsinB=2sin45^osin30^ocos15o−cos75o=2sinAsinB=2sin45osin30o
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment