Answer to Question #286290 in Trigonometry for EMILY

Question #286290

If cos(A-B) = cos 15° and cos(A+B)= cos 75° , the values of A and B. Hence without using a calculator and by using the sum and difference formula, show that cos 15° - cos 75° = 2 sin 45° sin 30°


1
Expert's answer
2022-01-11T00:21:25-0500

A=45o  B=30oA = 45^o \space \space B=30^o

{cos(AB)=cosAcosB+sinAsinB=cos15ocos(A+B)=cosAcosBsinAsinB=cos75o-\begin{cases} cos(A-B) = cosAcosB+sinAsinB=cos15^o \\ cos(A+B) = cosAcosB-sinAsinB=cos75^o \end{cases}

cos15ocos75o=2sinAsinB=2sin45osin30ocos15^o-cos75^o=2sinAsinB=2sin45^osin30^o


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment