P(3,-3) lies on the terminal arm of an angle in standard position.
a. Draw a sketch of the principal angle (θ) in standard position. Label θ AND the related acute
angle, RA. [2 marks]
b. Determine the exact primary trig ratios for θ. Show ALL your work. You do not need to
rationalize the denominator, but you must simplify your radical and your ratios. [5 marks]
c. Determine the values of the principal angle and related acute angle to the nearest degree.
A)
B)
"y=\\sqrt{r^2-x^2}=\\sqrt{7^2-2^2}=\\sqrt{49-4}=\\sqrt{45}=3\\sqrt{5}"
"sin \\theta=-\\frac{y}{r}=-\\frac{3 \\sqrt{5}}{7}"
"tan \\theta=\\frac{y}{x}=\\frac{3 \\sqrt{5}}{2}"
c) "tan \\theta=\\frac{y}{x}=\\frac{3 \\sqrt{5}}{2} \\implies \\theta= tan^{-1}\\frac{3 \\sqrt{5}}{2}=73.4"
"\\theta_{Total}=180+73.4=253.4 =253^0"
Comments
Leave a comment