Question #283603

Show that d= 2v² costheta sintheta(0_x)/gcos²thetax


1
Expert's answer
2021-12-30T17:24:42-0500

Since the question is unclear, we assume as follows:

Show that cosθsinθcosθ+sinθ=sec2θtan2θ\dfrac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\sec 2 \theta-\tan 2 \theta .

Solution:

cosθsinθcosθ+sinθ\dfrac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}

multiplying and dividing by \cos \theta-\sin \theta

=cosθsinθcosθ+sinθ×cosθsinθcosθsinθ=\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta} \times \frac{\cos \theta-\sin \theta}{\cos \theta-\sin \theta}

simplifying and using trigonometric identities

=(cosθsinθ)2cos2θsin2θ=cos2θ+sin2θ2sinθcosθcos2θ=1sin2θcos2θ=sec2θtan2θ\begin{aligned} &=\frac{(\cos \theta-\sin \theta)^{2}}{\cos ^{2} \theta-\sin ^{2} \theta}=\frac{\cos ^{2} \theta+\sin ^{2} \theta-2 \sin \theta \cos \theta}{\cos 2 \theta} \\ &=\frac{1-\sin 2 \theta}{\cos 2 \theta}=\sec 2 \theta-\tan 2 \theta \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS