Show that d= 2v² costheta sintheta(0_x)/gcos²thetax
Since the question is unclear, we assume as follows:
Show that "\\dfrac{\\cos \\theta-\\sin \\theta}{\\cos \\theta+\\sin \\theta}=\\sec 2 \\theta-\\tan 2 \\theta" .
"\\dfrac{\\cos \\theta-\\sin \\theta}{\\cos \\theta+\\sin \\theta}"
multiplying and dividing by \cos \theta-\sin \theta
"=\\frac{\\cos \\theta-\\sin \\theta}{\\cos \\theta+\\sin \\theta} \\times \\frac{\\cos \\theta-\\sin \\theta}{\\cos \\theta-\\sin \\theta}"
simplifying and using trigonometric identities
"\\begin{aligned}\n\n&=\\frac{(\\cos \\theta-\\sin \\theta)^{2}}{\\cos ^{2} \\theta-\\sin ^{2} \\theta}=\\frac{\\cos ^{2} \\theta+\\sin ^{2} \\theta-2 \\sin \\theta \\cos \\theta}{\\cos 2 \\theta} \\\\\n\n&=\\frac{1-\\sin 2 \\theta}{\\cos 2 \\theta}=\\sec 2 \\theta-\\tan 2 \\theta\n\n\\end{aligned}"
Comments
Leave a comment