y=ctgx+sin2x3
y=ctgx+sin2x3y=\ctg x+\sin^2x^3y=ctgx+sin2x3
(ctgx)′=−1sin² x(\ctg x)'= -\dfrac1{\sin²\ x}(ctgx)′=−sin² x1
(sin2x)′=sin(2x)∴a=(sin2x3)′=(sinx³×sinx³)′u=sinx³;du=3x²cosx³v=sinx³;dv=3x²cosx³da/dx=vdu+udv∴(sinx³×sinx³)′=3x²sinx³cosx³+3x²sinx³cosx³=6x²sinx³cosx³(\sin^2x)' = sin(2x)\\ \therefore a = (\sin^2x^3)' =(\sin x³ × \sin x³)'\\ u = \sin x³ ;\quad du = 3x²\cos x³\\ v = \sin x³ ;\quad dv= 3x²\cos x³\\ da/dx = vdu + udv\\ \therefore(\sin x³ × \sin x³)' = \\ 3x²\sin x³\cos x³ + 3x²\sin x³\cos x³ = 6x²\sin x³\cos x³(sin2x)′=sin(2x)∴a=(sin2x3)′=(sinx³×sinx³)′u=sinx³;du=3x²cosx³v=sinx³;dv=3x²cosx³da/dx=vdu+udv∴(sinx³×sinx³)′=3x²sinx³cosx³+3x²sinx³cosx³=6x²sinx³cosx³
dy/dx=−1sin2x+6x²sinx³cosx³dy/dx = -\dfrac1{\sin^2 x}+ 6x² \sin x³\cos x³dy/dx=−sin2x1+6x²sinx³cosx³
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment