Answer to Question #263809 in Trigonometry for kazbek

Question #263809

y=ctgx+sin2x3

1
Expert's answer
2021-11-18T15:04:23-0500

y=ctgx+sin2x3y=\ctg x+\sin^2x^3


(ctgx)=1sin² x(\ctg x)'= -\dfrac1{\sin²\ x}


(sin2x)=sin(2x)a=(sin2x3)=(sinx³×sinx³)u=sinx³;du=3x²cosx³v=sinx³;dv=3x²cosx³da/dx=vdu+udv(sinx³×sinx³)=3x²sinx³cosx³+3x²sinx³cosx³=6x²sinx³cosx³(\sin^2x)' = sin(2x)\\ \therefore a = (\sin^2x^3)' =(\sin x³ × \sin x³)'\\ u = \sin x³ ;\quad du = 3x²\cos x³\\ v = \sin x³ ;\quad dv= 3x²\cos x³\\ da/dx = vdu + udv\\ \therefore(\sin x³ × \sin x³)' = \\ 3x²\sin x³\cos x³ + 3x²\sin x³\cos x³ = 6x²\sin x³\cos x³


dy/dx=1sin2x+6x²sinx³cosx³dy/dx = -\dfrac1{\sin^2 x}+ 6x² \sin x³\cos x³

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment