Answer to Question #260340 in Trigonometry for prettygirl

Question #260340

Prove that cos 3theta - cos theta/sin 3 theta sin theta = 4 cos theta/ 1- 4 cos^2 theta


1
Expert's answer
2021-11-03T11:26:42-0400

let theta = k

We need to prove,

(cos 3k - cos k)/(sin 3k*sin k) = 4 cos k/(1- 4 cos2 k)


We know that,

cos2 k + sin2k = 1

cos 3k = 4 cos3 k - 3 cos k

sin3k = 3 sin k - 4 sin3 k


taking the Left Hand side,

(cos 3k - cos k)/(sin 3k*sin k) = (4 cos 3 k - 3 cos k - cos k) / (3 sin k - 4 sin3 k)(sin k)

= (4cos 3 k - 4 cos k)/(3 - 4 sin2 k)(sin 2 k)

=4 cos k(cos2 k - 1) / (3 - 4 sin2k)(sin 2 k)

=4 cos k(-sin2 k) / (3 - 4 sin2 k)(sin2 k)

=4 cos k / (4 sin2 k - 3)

= 4 cos k / (4(1 - cos2 k) - 3)

= 4 cos k / (4 - 4 cos2 k - 3)

= 4 cos k / (1 - 4 cos2 k)

= Right Hand Side


Hence proved


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS