Prove that cos 3theta - cos theta/sin 3 theta sin theta = 4 cos theta/ 1- 4 cos^2 theta
let theta = k
We need to prove,
(cos 3k - cos k)/(sin 3k*sin k) = 4 cos k/(1- 4 cos2 k)
We know that,
cos2 k + sin2k = 1
cos 3k = 4 cos3 k - 3 cos k
sin3k = 3 sin k - 4 sin3 k
taking the Left Hand side,
(cos 3k - cos k)/(sin 3k*sin k) = (4 cos 3 k - 3 cos k - cos k) / (3 sin k - 4 sin3 k)(sin k)
= (4cos 3 k - 4 cos k)/(3 - 4 sin2 k)(sin 2 k)
=4 cos k(cos2 k - 1) / (3 - 4 sin2k)(sin 2 k)
=4 cos k(-sin2 k) / (3 - 4 sin2 k)(sin2 k)
=4 cos k / (4 sin2 k - 3)
= 4 cos k / (4(1 - cos2 k) - 3)
= 4 cos k / (4 - 4 cos2 k - 3)
= 4 cos k / (1 - 4 cos2 k)
= Right Hand Side
Hence proved
Comments
Leave a comment