graph the expression 1-tan^2x/1+tan^2x, and make a conjecture about another expression that is equivalent to another.
Let us graph the function "y=\\frac{1-\\tan^2x}{1+\\tan^2x}:"
It follows from the graph that "y=\\cos(2x)."
Indeed, "\\frac{1-\\tan^2x}{1+\\tan^2x}\n=\\frac{1-\\tan^2x}{\\frac{1}{\\cos^2 x}}\n=\\cos^2x(1-\\frac{\\sin^2x}{\\cos^2x})\n=\\cos^2x-\\sin^2 x=\\cos(2x)."
Comments
Leave a comment