Question #249964

If t = tan(θ\theta /2), show that sin(θ\theta )=2t/(1-t2) and cos (θ\theta )=(1-t2)/(1+t2). hence solve the equation cos(θ\theta )-2sin(θ\theta )=2


1
Expert's answer
2021-10-12T10:37:28-0400

Let t=tan(θ2).t = \tan(\frac{\theta}2). Then

sin(θ)=2sinθ2cosθ2=2tanθ2cos2θ2=2tanθ21cos2θ2=2tanθ21+tan2θ2=2t1+t2,\sin(\theta )=2\sin\frac{\theta}2\cos\frac{\theta}2=2\tan\frac{\theta}2\cos^2\frac{\theta}2 =\frac{2\tan\frac{\theta}2}{\frac{1}{\cos^2\frac{\theta}2}} =\frac{2\tan\frac{\theta}2}{1+\tan^2\frac{\theta}2}=\frac{2t}{1+t^2}, and

cos(θ)=cos2θ2sin2θ2=cos2θ2sin2θ2cos2θ21cos2θ2=1tan2θ21+tan2θ2=1t21+t2.\cos (\theta )=\cos^2\frac{\theta}2-\sin^2\frac{\theta}2 =\frac{\cos^2\frac{\theta}2-\sin^2\frac{\theta}2}{\cos^2\frac{\theta}2\frac{1}{\cos^2\frac{\theta}2}} =\frac{1-\tan^2\frac{\theta}2}{1+\tan^2\frac{\theta}2} =\frac{1-t^2}{1+t^2}.


Let us solve the equation cos(θ)2sin(θ)=2.\cos(\theta )-2\sin(\theta )=2. Let t=tan(θ2).t = \tan(\frac{\theta}2). Then we get the equation

1t21+t222tt2+1=2,\frac{1-t^2}{1+t^2}-2\frac{2t}{t^2+1}=2, and hence 1t24t1+t2=2.\frac{1-t^2-4t}{1+t^2}=2. It follows that 1t24t=2+2t2,1-t^2-4t=2+2t^2, and thus 3t2+4t+1=0.3t^2+4t+1=0. The last equation is equivalent to(3t+1)(t+1)=0,(3t+1)(t+1)=0, and hence has the roots t1=1, t2=13.t_1=-1,\ t_2=-\frac{1}3. Then tan(θ2)=1\tan(\frac{\theta}2)=-1 or tan(θ2)=13.\tan(\frac{\theta}2)=-\frac{1}3. It follows that θ2=π4+πn\frac{\theta}2=-\frac{\pi}4+\pi n or θ2=arctan13+πn, nN.\frac{\theta}2=-\arctan\frac{1}3+\pi n,\ n\in\mathbb N.

We conclude that the solutions of the equation cos(θ)2sin(θ)=2\cos(\theta )-2\sin(\theta )=2 are of the form:

θ=π2+2πn\theta=-\frac{\pi}2+2\pi n or θ=2arctan13+2πn,\theta=-2\arctan\frac{1}3+2\pi n, where nN.n\in\mathbb N.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS