Express 3 sin 4t + 8 cos 4t in the form R sin ( ωt + α ), α
Express 3 "\\sin" 4t + 8 "\\cos" 4t in the form R "\\sin" ("\\omega t" + "\\alpha"), "\\alpha"
Solution
Let 3 "\\sin" 4t + 8 "\\cos" 4t = R "\\sin" ("\\omega t" + "\\alpha")
By using compound angle formula "\\sin (A + B) = \\sin A \\cos B + \\cos A \\sin B" we get to solve the following:
3 "\\sin" 4t + 8 "\\cos" 4t = R[ "\\sin" 4t "\\cos \\alpha" + "\\cos 4t" "\\sin \\alpha"]
= (R "\\cos \\alpha") "\\sin" 4t + (R "\\sin \\alpha") "\\cos 4t"
Equating the coefficients of:
"\\sin" 4t gives: 3 = R "\\cos \\alpha", from which, "\\cos \\alpha" = "\\frac{3}{R}"
And "\\cos" 4t gives: 8 = R "\\sin \\alpha", from which, "\\sin \\alpha" = "\\frac{8}{R}"
There is only one quadrant where both "\\sin \\alpha" and "\\cos \\alpha" are positive and is the first.
Hence: R = "\\sqrt{3^2 + 8^2}" = 8.544003745
from trigonometric ratios: "\\alpha = \\arctan \\frac{8}{3}" = 69.44395478 or 1.212025657 radians
Hence 3 "\\sin" 4t + 8 "\\cos" 4t = 8.544003745 "\\sin (4t + 1.212025657)", 1.212025657
Answer: 8.544003745 "\\sin"(4t + 1.212025657), 1.212025657
Comments
Leave a comment