Express 3 sin \sin sin 4t + 8 cos \cos cos 4t in the form R sin \sin sin (ω t \omega t ω t + α \alpha α ), α \alpha α
Solution
Let 3 sin \sin sin 4t + 8 cos \cos cos 4t = R sin \sin sin (ω t \omega t ω t + α \alpha α )
By using compound angle formula sin ( A + B ) = sin A cos B + cos A sin B \sin (A + B) = \sin A \cos B + \cos A \sin B sin ( A + B ) = sin A cos B + cos A sin B we get to solve the following:
3 sin \sin sin 4t + 8 cos \cos cos 4t = R[ sin \sin sin 4t cos α \cos \alpha cos α + cos 4 t \cos 4t cos 4 t sin α \sin \alpha sin α ]
= (R cos α \cos \alpha cos α ) sin \sin sin 4t + (R sin α \sin \alpha sin α ) cos 4 t \cos 4t cos 4 t
Equating the coefficients of:
sin \sin sin 4t gives: 3 = R cos α \cos \alpha cos α , from which, cos α \cos \alpha cos α = 3 R \frac{3}{R} R 3
And cos \cos cos 4t gives: 8 = R sin α \sin \alpha sin α , from which, sin α \sin \alpha sin α = 8 R \frac{8}{R} R 8
There is only one quadrant where both sin α \sin \alpha sin α and cos α \cos \alpha cos α are positive and is the first.
Hence: R = 3 2 + 8 2 \sqrt{3^2 + 8^2} 3 2 + 8 2 = 8.544003745
from trigonometric ratios: α = arctan 8 3 \alpha = \arctan \frac{8}{3} α = arctan 3 8 = 69.44395478 or 1.212025657 radians
Hence 3 sin \sin sin 4t + 8 cos \cos cos 4t = 8.544003745 sin ( 4 t + 1.212025657 ) \sin (4t + 1.212025657) sin ( 4 t + 1.212025657 ) , 1.212025657
Answer: 8.544003745 sin \sin sin (4t + 1.212025657), 1.212025657
Comments