Prove that 1-cos2A/sin2A is tanA
1−cos2Asin2A=1−(1−2sin2A)2sinA∗cosA\frac{1-cos2A}{sin2A}=\frac{1-(1-2sin^2A)}{2sinA*cosA}sin2A1−cos2A=2sinA∗cosA1−(1−2sin2A) ,
TRIGNOMETRIC DENTITY used : [Cos2A = 1-2sin2A]
[sin2A = 2sinA×cosA]
1−cos2Asin2A=1−1+2sin2A2sinA×cosA=sinAcosA=tanA\frac{1-cos2A}{sin2A}=\frac{1-1+2sin^2A}{2sinA\times cosA} = \frac{sinA}{cosA}=tanAsin2A1−cos2A=2sinA×cosA1−1+2sin2A=cosAsinA=tanA
So, 1−cos2Asin2A=tanA\frac{1-cos2A}{sin2A}=tanAsin2A1−cos2A=tanA
LHS = RHS, Hence proved.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment