a. The plot is as shown below
b. V2=70sin(50πt–0.32)
At t=0, V2=70sin(50π∗0–0.32)=70sin(50π0−258)
=70sin(−258)=70(−sin(258))=−70sin(258)=−22.02
At t=20, V2=70sin(50π∗20–0.32)=70sin(50π∗20−258)
70sin(1000π−258)=−22.02
At t=50, V2=70sin(50π∗50–0.32)=70sin(50π∗50−258)
70sin(2500π−258)=−22.02
c. sin(A–B)=sinAcosB–cosAsinB.
A=50πt and B=0.32
At t=0, sin(50π∗0)cos0.32–cos(50π∗0)sin0.32.=−22.02
At t=20, sin(50π∗20)cos0.32–cos(50π∗20)sin0.32.=−22.02
At t=50, sin(50π∗50)cos0.32–cos(50π∗50)sin0.32.=−22.02
d. V1+V2={70sin(50πt−0.32)}+{70sin(50πt)}
V3=70(sin(50πt)cos(0.32)+cos(50πt)sin(0.32))
V3=70(sin(50πt)+0.94923sin(157.07963t)+0.31456cos(157.07963t))
V3=70(1.94923sin(157.0796t)+0.31456cos(157.07963t))
Comments