Question #167254

The value of the voltage in an ac circuit at any time t seconds is given by V1 = 70 sin (50 t). Going through a component results in the wave lagging by 0.32 radians, the result being V2 = 70 sin (50π t – 0.32).


a) For t = 0 to t = 80ms, use increments of 5ms plot the following 3 graphs on the same pair of axes.


V1 = 70 sin (50 t).


V2 = 70 sin (50π t – 0.32).


V3 = V1 + V2


b) For V2 = 70 sin (50π t – 0.32) state the voltage at t = 0, 20 and 50ms.


c)Verify the answers to (b) using sin (A – B) = sin A cos B – cos A sin B.


d)Use the sine and cosine rules to find the equation for V3.


1
Expert's answer
2021-03-01T06:43:36-0500

a. The plot is as shown below



b. V2=70sin(50πt0.32)V_2 = 70 sin (50π t – 0.32)

At t=0, V2=70sin(50π00.32)=70sin(50π0825)V_2 = 70 sin (50π *0 – 0.32)=70\sin \left(50\pi 0-\frac{8}{25}\right)

=70sin(825)=70(sin(825))=70sin(825)=22.02=70\sin \left(-\frac{8}{25}\right)=70\left(-\sin \left(\frac{8}{25}\right)\right)=-70\sin \left(\frac{8}{25}\right)=-22.02

At t=20, V2=70sin(50π200.32)=70sin(50π20825)V_2 = 70 sin (50π *20 – 0.32)=70\sin \left(50\pi *20-\frac{8}{25}\right)

70sin(1000π825)=22.0270\sin \left(1000\pi -\frac{8}{25}\right)=-22.02

At t=50, V2=70sin(50π500.32)=70sin(50π50825)V_2 = 70 sin (50π *50 – 0.32)=70\sin \left(50\pi *50-\frac{8}{25}\right)

70sin(2500π825)=22.0270\sin \left(2500\pi -\frac{8}{25}\right)=-22.02


c. sin(AB)=sinAcosBcosAsinB.sin (A – B) = sin A cos B – cos A sin B.

A=50πt and B=0.32A=50πt \space and \space B=0.32

At t=0, sin(50π0)cos0.32cos(50π0)sin0.32.=22.02sin(50\pi*0)cos0.32–cos(50\pi*0)sin0.32.=-22.02

At t=20, sin(50π20)cos0.32cos(50π20)sin0.32.=22.02sin(50\pi*20)cos0.32–cos(50\pi*20)sin0.32.=-22.02

At t=50, sin(50π50)cos0.32cos(50π50)sin0.32.=22.02sin(50\pi*50)cos0.32–cos(50\pi*50)sin0.32.=-22.02


d. V1+V2={70sin(50πt0.32)}+{70sin(50πt)}V_1+V_2=\left\{70\:sin\:\left(50\pi \:t-\:0.32\right)\right\}+\left\{70\:sin\:\left(50\pi \:t\right)\right\}

V3=70(sin(50πt)cos(0.32)+cos(50πt)sin(0.32))V_3=70(\sin \left(50\pi t\right)\cos \left(0.32\right)+\cos \left(50\pi t\right)\sin \left(0.32\right))

V3=70(sin(50πt)+0.94923sin(157.07963t)+0.31456cos(157.07963t))V_3=70\left(\sin \left(50\pi t\right)+0.94923 \sin \left(157.07963t\right)+0.31456\cos \left(157.07963 t\right)\right)

V3=70(1.94923sin(157.0796t)+0.31456cos(157.07963t))V_3=70\left(1.94923\sin \left(157.0796t\right)+0.31456\cos \left(157.07963t\right)\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS