sinθ+cosθ=sinθ−cosθ1−2cos2θ
Rearranging the right hand side(RHS) becomes,
−1(cosθ−sinθ)−1(2cos2θ−1)=cosθ−sinθ2cos2θ−1
From the following trigonometric identity,
cos2θ+sin2θ=1
then, the numerator,
2cos2θ−1=2cos2θ−(cos2θ+sin2θ)
so,
2cos2θ−1=cos2θ−sin2θ
Substituting for the numerator in the RHS,
sinθ+cosθ=cosθ−sinθcos2θ−sin2θ
The numerator of the right hand side is a difference of two squares, thus,
cos2θ−sin2θ=(cosθ+sinθ)(cosθ−sinθ)
Substituting for the numerator of the RHS,
sinθ+cosθ=cosθ−sinθ(cosθ+sinθ)(cosθ−sinθ)
Simplifying the RHS proves that the left hand side is equal to the right hand side, that is,
sinθ+cosθ=cosθ+sinθ
This proves that,
sinθ+cosθ=sinθ−cosθ1−2cos2θ
Comments