Question #168641

sin𝜃+cos𝜃= 1−2cos2𝜃/sin 𝜃−cos 𝜃


1
Expert's answer
2021-03-09T16:27:23-0500

sinθ+cosθ=12cos2θsinθcosθsin\theta+cos\theta=\frac{1-2cos^2\theta}{sin\theta-cos\theta}


Rearranging the right hand side(RHS) becomes,


1(2cos2θ1)1(cosθsinθ)=2cos2θ1cosθsinθ\frac{-1(2cos^2\theta-1)}{-1(cos \theta-sin\theta)}=\frac{2cos^2\theta-1}{cos\theta-sin\theta}

From the following trigonometric identity,

cos2θ+sin2θ=1cos^2\theta+sin^2\theta=1

then, the numerator,

2cos2θ1=2cos2θ(cos2θ+sin2θ)2cos^2\theta-1=2cos^2\theta-(cos^2\theta+sin^2\theta)

so,

2cos2θ1=cos2θsin2θ2cos^2\theta-1=cos^2\theta-sin^2\theta

Substituting for the numerator in the RHS,

sinθ+cosθ=cos2θsin2θcosθsinθsin\theta+cos\theta=\frac{cos^2\theta-sin^2\theta}{cos\theta-sin\theta}

The numerator of the right hand side is a difference of two squares, thus,

cos2θsin2θ=(cosθ+sinθ)(cosθsinθ)cos^2\theta-sin^2\theta=(cos\theta+sin\theta)(cos\theta-sin\theta)

Substituting for the numerator of the RHS,

sinθ+cosθ=(cosθ+sinθ)(cosθsinθ)cosθsinθsin\theta+cos\theta=\frac{(cos\theta+sin\theta)(cos\theta-sin\theta)}{cos\theta-sin\theta}


Simplifying the RHS proves that the left hand side is equal to the right hand side, that is,

sinθ+cosθ=cosθ+sinθsin\theta+cos\theta=cos\theta+sin\theta


This proves that,

sinθ+cosθ=12cos2θsinθcosθsin\theta+cos\theta=\frac{1-2cos^2\theta}{sin\theta-cos\theta}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS