Let's apply the cos of a sum formula to cos ( 1 5 ∘ + 1 5 ∘ ) \cos(15^\circ+15^\circ) cos ( 1 5 ∘ + 1 5 ∘ ) , as we know that cos ( 3 0 ∘ ) = 3 2 : \cos(30^{\circ})=\frac{\sqrt{3}}{2}: cos ( 3 0 ∘ ) = 2 3 :
3 2 = cos ( 3 0 ∘ ) = cos ( 1 5 ∘ + 1 5 ∘ ) = cos ( 1 5 ∘ ) × cos ( 1 5 ∘ ) − sin ( 1 5 ∘ ) × sin ( 1 5 ∘ ) \frac{\sqrt{3}}{2} = \cos(30^\circ)=\cos(15^\circ+15^\circ)=\cos(15^\circ)\times\cos(15^\circ)-\sin(15^\circ)\times\sin(15^\circ) 2 3 = cos ( 3 0 ∘ ) = cos ( 1 5 ∘ + 1 5 ∘ ) = cos ( 1 5 ∘ ) × cos ( 1 5 ∘ ) − sin ( 1 5 ∘ ) × sin ( 1 5 ∘ )
Now by the main trigonometrical identity (sin 2 α + cos 2 α = 1 ) \sin^2\alpha+\cos^2\alpha=1) sin 2 α + cos 2 α = 1 ) we can write :
3 2 = cos 2 ( 1 5 ∘ ) − ( 1 − cos 2 ( 1 5 ∘ ) ) = 2 cos 2 ( 1 5 ∘ ) − 1 \frac{\sqrt{3}}{2}=\cos^2(15^\circ)-(1-\cos^2(15^\circ))=2\cos^2(15^\circ)-1 2 3 = cos 2 ( 1 5 ∘ ) − ( 1 − cos 2 ( 1 5 ∘ )) = 2 cos 2 ( 1 5 ∘ ) − 1
2 cos 2 ( 1 5 ∘ ) = 1 + 3 2 2\cos^2(15^\circ)=1+\frac{\sqrt{3}}{2} 2 cos 2 ( 1 5 ∘ ) = 1 + 2 3
cos ( 1 5 ∘ ) = ± 1 2 + 3 4 \cos(15^\circ)=\pm \sqrt{\frac{1}{2}+\frac{\sqrt{3}}{4}} cos ( 1 5 ∘ ) = ± 2 1 + 4 3
We know also that cos ( 1 5 ∘ ) > 0 \cos(15^\circ)>0 cos ( 1 5 ∘ ) > 0 (as 0 ∘ < 1 5 ∘ < 9 0 ∘ 0^\circ<15^\circ<90^\circ 0 ∘ < 1 5 ∘ < 9 0 ∘ ), so we have :
cos ( 1 5 ∘ ) = 1 2 + 3 4 = 1 2 2 + 3 \cos(15^\circ)=\sqrt{\frac{1}{2}+\frac{\sqrt{3}}{4}}=\frac{1}{2} \sqrt{2+\sqrt{3}} cos ( 1 5 ∘ ) = 2 1 + 4 3 = 2 1 2 + 3
We can also simplify the last expression by writing :
( x + y ) 2 = 2 + 3 (x+y)^2=2+\sqrt{3} ( x + y ) 2 = 2 + 3
x 2 + y 2 = 2 , x y = 3 2 x^2+y^2=2, xy=\frac{\sqrt{3}}{2} x 2 + y 2 = 2 , x y = 2 3
x 2 + 3 4 x 2 = 2 x^2+\frac{3}{4x^2}=2 x 2 + 4 x 2 3 = 2
x 4 − 2 x 2 + 3 4 = 0 x^4-2x^2+\frac{3}{4}=0 x 4 − 2 x 2 + 4 3 = 0
x 2 = 2 ± 4 − 3 2 x^2=\frac{2\pm\sqrt{4-3}}{2} x 2 = 2 2 ± 4 − 3
x = 1 2 , y = 3 2 x=\sqrt{\frac{1}{2}},y=\sqrt{\frac{3}{2}} x = 2 1 , y = 2 3
So we have :
cos ( 1 5 ∘ ) = 1 2 × ( 1 2 + 3 2 ) = 2 + 6 4 \cos(15^\circ)=\frac{1}{2}\times(\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{\sqrt{2}})=\frac{\sqrt{2}+\sqrt{6}}{4} cos ( 1 5 ∘ ) = 2 1 × ( 2 1 + 2 3 ) = 4 2 + 6
Comments