Cosθ=−513Cos\theta=\frac{-5}{13}Cosθ=13−5
Cos2θ+sin2θ=1Cos^2\theta+sin^2\theta=1Cos2θ+sin2θ=1
(−513)2+sin2θ=1(\frac{-5}{13})^2+sin^2\theta=1(13−5)2+sin2θ=1
Sin2θ=1−25169Sin^2\theta=1-\frac{25}{169}Sin2θ=1−16925
Sin2θ=144169Sin^2\theta=\frac{144}{169}Sin2θ=169144
Sinθ=1213Sin\theta=\frac{12}{13}Sinθ=1312
Sin2θ=2sinθcosθSin2\theta=2sin\theta cos\thetaSin2θ=2sinθcosθ
=2×1213×−513=2\times \frac{12}{13} \times \frac{-5}{13}=2×1312×13−5
Sin2θ=−120169Sin2\theta=\frac{-120}{169}Sin2θ=169−120
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments