Question #143721
Suppose tan(theta) = 4/3 and csc<0, find tan(theta/2)
1
Expert's answer
2020-11-11T12:49:42-0500

Using half-angle formula.

tanθ=2t1t2\tan\theta=\frac{2t}{1-t^2} , where t=tanθ2t=\tan\frac{\theta}{2} .

43=2t1t24(1t2)=6t2(1t2)=3t22t2=3t2t2+3t2=02t2+4tt2=02t(t+2)1(t+2)=0(2t1)(t+2)=02t1=0,t+2=0t=12,t=2\frac{4}{3}=\frac{2t}{1-t^2}\\ 4(1-t^2)=6t\\ 2(1-t^2)=3t\\ 2-2t^2=3t\\ 2t^2+3t-2=0\\ 2t^2+4t-t-2=0\\ 2t(t+2)-1(t+2)=0\\ (2t-1)(t+2)=0\\ 2t-1=0 ,t+2=0\\ t=\frac{1}{2}, t=-2

So,

tanθ2=12or2\tan\frac{\theta}{2}=\frac{1}{2} or-2


But,. there is a condition that cscθ<0\csc\theta<0 .


If tanθ2=12\tan\frac{\theta}{2}=\frac{1}{2} , then cscθ=54>0\csc\theta=\frac{5}{4}>0 . Therefore, this is not the answer.


If tanθ2=2,\tan\frac{\theta}{2}=-2, then cscθ=54<0\csc\theta=-\frac{5}{4}<0 . Therefore this is the answer.


So, tanθ2=2.\tan\frac{\theta}{2}=-2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS