∠BAF=130°−90°=40°\angle BAF=130\degree-90\degree=40\degree∠BAF=130°−90°=40°
∠ABF=270°−200°=70°\angle ABF=270\degree-200\degree=70\degree∠ABF=270°−200°=70°
△ABF:∠AFB=180°−70°−40°=70°=∠ABF,\triangle ABF: \angle AFB=180\degree-70\degree-40\degree=70\degree=\angle ABF,△ABF:∠AFB=180°−70°−40°=70°=∠ABF, so
AF=AB=17AF=AB=17AF=AB=17 km.
BFsin∠BAF=ABsin∠AFB,\frac{BF}{sin\angle BAF}=\frac{AB}{sin\angle AFB},sin∠BAFBF=sin∠AFBAB, BF=17⋅sin40°sin70°≈11.6BF=17\cdot\frac{sin40\degree}{sin70\degree}\approx11.6BF=17⋅sin70°sin40°≈11.6 km.
Tower B is closest to the fire and its distance is 11.6 km.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments