Use double angle formula for cosine "cos(2A)=2cos^2(A)-1"
So, the cosine of angle "A" can be written as,
"2cos^2(A)=1+cos(2A)"
"cos^2(A)=\\frac{1}{2}(1+cos(2A))"
"cos(A)=\\sqrt{\\frac{1}{2}(1+cos(2A))}"
Plug "A=\\frac{\\pi}{12}" into the relation "cos(A)=\\sqrt{\\frac{1}{2}(1+cos(2A))}" to obtain,
"cos(\\frac{\\pi}{12})=\\sqrt{\\frac{1}{2}(1+cos(2(\\frac{\\pi}{12})))}"
"=\\sqrt{\\frac{1}{2}(1+cos(\\frac{\\pi}{6}))}"
"=\\sqrt{\\frac{1}{2}(1+\\frac{\\sqrt{3}}{2})}" .....plug "cos(\\frac{\\pi}{6})=\\frac{\\sqrt3}{2}"
"=\\sqrt{\\frac{1}{2}(\\frac{2+\\sqrt{3}}{2})}"
"=\\sqrt{\\frac{1}{4}(2+\\sqrt{3})}"
"=\\frac{1}{2}\\sqrt{2+\\sqrt{3}}\\approx0.965926"
Comments
Leave a comment