(a) Sin(4a)=Sin2(2a)=2sin2acos2aSin2(2a)=2sin2acos2aSin2(2a)=2sin2acos2a
Further It can be resolved as
=2×2sinacosa×(2cos2a−1)2\times 2sinacosa\times (2cos^2a-1)2×2sinacosa×(2cos2a−1)
=8sinacos3a−4sinacosa8sinacos^3a-4sinacosa8sinacos3a−4sinacosa
(b) Cos(6A)=cos2(3a)=2cos23a−1cos^23a-1cos23a−1 or 1−2sin23a1-2sin^23a1−2sin23a
(c) tan(5a)=tan2(2.5a)=2tan(2.5a)1−tan22.5a\dfrac{2tan(2.5a)}{1-tan^22.5a}1−tan22.5a2tan(2.5a)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments