Question #139925
Determine the values of sin(2a), cos(2a) and tan(2a) , given cos(a) = -4/5 and Pi over 2 ≤ 0 ≤ Pi
1
Expert's answer
2020-10-25T19:04:29-0400

cos(a)=45cos(a)=-\frac{4}{5}


lets find sin(a):

sin2(a)+cos2(a)=1    sin(a)=1cos2(a)sin^2(a)+cos^2(a)=1\implies sin(a)=\sqrt{1-cos^2(a)}

1(45)2=925=±35\sqrt{1-(-\frac{4}{5})^2}=\sqrt{\frac{9}{25}}=\pm\frac{3}{5}

π2aπ\frac{\pi}{2}\leq a \leq \pi then sin(a)=35\sin(a)=\frac{3}{5}


tan(a):

tan(a)=sin(a)cos(a)=3545=34tan(a)=\frac{sin(a)}{cos(a)}=\frac{\frac{3}{5}}{-\frac{4}{5}}=-\frac{3}{4}


using double angle formulas lets find sin(2a), cos(2a), tan(2a):


sin(2a)=2sin(a)cos(a)=235(45)=2425sin(2a)=2sin(a)cos(a)=2\cdot\frac{3}{5}(-\frac{4}{5})=-\frac{24}{25}


cos(2a)=cos2(a)sin2(a)=(45)2(35)2=1625925=725cos(2a)=cos^2(a)-sin^2(a)=(-\frac{4}{5})^2-(\frac{3}{5})^2=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}


tan(2a)=sin(2a)cos(2a)=2425725=247tan(2a)=\frac{sin(2a)}{cos(2a)}=\frac{-\frac{24}{25}}{\frac{7}{25}}=-\frac{24}{7}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS