cos(a)=−54
lets find sin(a):
sin2(a)+cos2(a)=1⟹sin(a)=1−cos2(a)
1−(−54)2=259=±53
2π≤a≤π then sin(a)=53
tan(a):
tan(a)=cos(a)sin(a)=−5453=−43
using double angle formulas lets find sin(2a), cos(2a), tan(2a):
sin(2a)=2sin(a)cos(a)=2⋅53(−54)=−2524
cos(2a)=cos2(a)−sin2(a)=(−54)2−(53)2=2516−259=257
tan(2a)=cos(2a)sin(2a)=257−2524=−724
Comments