tan a = − 7 24 tan ( π − a ) = 7 24 a = π − arctan ( 7 24 ) sin ( 2 a ) = 2 cos a sin a = 2 cos ( π − arctan ( 7 24 ) ) sin ( π − arctan ( 7 24 ) ) = − 2 cos ( arctan ( 7 24 ) ) sin ( arctan ( 7 24 ) ) Let y = cos ( arctan ( x ) ) y = cos u , x = tan u 1 + x 2 = sec 2 u cos u = 1 1 + x 2 y = cos u = 1 1 + x 2 sin u = 1 − cos 2 u = 1 − ( 1 1 + x 2 ) 2 = x 1 + x 2 = sin ( arctan ( x ) ) sin ( 2 a ) = − 2 × 1 1 + 7 2 2 4 2 × 7 / 24 1 + 7 2 2 4 2 = − 14 × 24 ( 7 2 + 2 4 2 ) ( 7 2 + 2 4 2 ) = − 14 × 24 7 2 + 2 4 2 = − 336 625 tan ( 2 a ) = 2 tan a 1 − tan 2 a = 2 × − 7 / 24 1 − 7 2 2 4 2 = − 7 12 × 2 4 2 2 4 2 − 7 2 = − 14 × 24 2 4 2 − 7 2 = − 336 527 \displaystyle
\tan{a} = \frac{-7}{24}\\
\tan(\pi - a) = \frac{7}{24}\\
a = \pi - \arctan\left(\frac{7}{24}\right)\\
\begin{aligned}
\sin(2a) &= 2\cos{a}\sin{a}
\\&= 2\cos\left(\pi - \arctan\left(\frac{7}{24}\right)\right)\sin\left(\pi - \arctan\left(\frac{7}{24}\right)\right)
\\&= -2\cos\left(\arctan\left(\frac{7}{24}\right)\right) \sin\left(\arctan\left(\frac{7}{24}\right)\right)
\end{aligned}\\
\textsf{Let}\,y = \cos(\arctan(x))\\
y = \cos{u}, x = \tan{u}\\
1 + x^2 = \sec^2{u}\\
\cos{u} = \frac{1}{\sqrt{1 + x^2}}\\
y = \cos{u} = \frac{1}{\sqrt{1 + x^2}}\\
\begin{aligned}
\sin{u} &= \sqrt{1 - \cos^2{u}}
\\&= \sqrt{1 - \left(\frac{1}{\sqrt{1 + x^2}}\right)^2} = \frac{x}{\sqrt{1 + x^2}} = \sin(\arctan(x))
\end{aligned}\\
\begin{aligned}
\sin(2a) &= -2 \times \frac{1}{\sqrt{1 + \frac{7^2}{24^2}}} \times \frac{7/24}{\sqrt{1 + \frac{7^2}{24^2}}}
\\&= \frac{-14 \times 24}{(\sqrt{7^2 + 24^2})(\sqrt{7^2 + 24^2})}
\\&= \frac{-14 \times 24}{7^2 + 24^2} = -\frac{336}{625}
\end{aligned}\\
\begin{aligned}
\tan(2a) &= \frac{2\tan{a}}{1 - \tan^2{a}}
\\&= \frac{2 \times -7/24}{1 - \frac{7^2}{24^2}} = -\frac{7}{12} \times \frac{24^2}{24^2 - 7^2}
\\&= \frac{-14 \times 24}{24^2 - 7^2} = \frac{-336}{527}
\end{aligned}\\ tan a = 24 − 7 tan ( π − a ) = 24 7 a = π − arctan ( 24 7 ) sin ( 2 a ) = 2 cos a sin a = 2 cos ( π − arctan ( 24 7 ) ) sin ( π − arctan ( 24 7 ) ) = − 2 cos ( arctan ( 24 7 ) ) sin ( arctan ( 24 7 ) ) Let y = cos ( arctan ( x )) y = cos u , x = tan u 1 + x 2 = sec 2 u cos u = 1 + x 2 1 y = cos u = 1 + x 2 1 sin u = 1 − cos 2 u = 1 − ( 1 + x 2 1 ) 2 = 1 + x 2 x = sin ( arctan ( x )) sin ( 2 a ) = − 2 × 1 + 2 4 2 7 2 1 × 1 + 2 4 2 7 2 7/24 = ( 7 2 + 2 4 2 ) ( 7 2 + 2 4 2 ) − 14 × 24 = 7 2 + 2 4 2 − 14 × 24 = − 625 336 tan ( 2 a ) = 1 − tan 2 a 2 tan a = 1 − 2 4 2 7 2 2 × − 7/24 = − 12 7 × 2 4 2 − 7 2 2 4 2 = 2 4 2 − 7 2 − 14 × 24 = 527 − 336
Comments