Question #289747

find the curvature and torsion of the curve z=u,y=1+u/u,z=1-u^2/u


1
Expert's answer
2022-01-25T06:51:29-0500

a)


r(u)=u,1+uu,1u2ur(u)=\langle u, \dfrac{1+u}{u}, \dfrac{1-u^2}{u}\rangle

r(u)=1,1u2,1u21r'(u)=\langle1, -\dfrac{1}{u^2},-\dfrac{1}{u^2}-1\rangle

r(u)=0,2u3,2u3r''(u)=\langle0, \dfrac{2}{u^3}, \dfrac{2}{u^3}\rangle

r(u)=(1)2+(1u2)2+(1u21)2|r'(u)|=\sqrt{(1)^2+(-\dfrac{1}{u^2})^2+(-\dfrac{1}{u^2}-1)^2}

=2u4+2u2+2u2=\dfrac{\sqrt{2u^4+2u^2+2}}{u^2}

r(u)×r(u)=ijk11u21u2102u32u3r'(u)\times r''(u)=\begin{vmatrix} i & j & k \\ \\ 1 & -\dfrac{1}{u^2} & -\dfrac{1}{u^2}-1 \\ \\ 0 & \dfrac{2}{u^3}&\dfrac{2}{u^3} \end{vmatrix}

=i1u21u212u32u3j11u2102u3=i\begin{vmatrix} -\dfrac{1}{u^2} & -\dfrac{1}{u^2}-1 \\ \\ \dfrac{2}{u^3} & \dfrac{2}{u^3} \end{vmatrix}-j\begin{vmatrix} 1 & -\dfrac{1}{u^2}-1 \\ \\ 0& \dfrac{2}{u^3} \end{vmatrix}

+k11u202u3=2u3i2u3j+2u3k+k\begin{vmatrix} 1 & -\dfrac{1}{u^2} \\ \\ 0 & \dfrac{2}{u^3} \end{vmatrix}=-\dfrac{2}{u^3}i-\dfrac{2}{u^3}j+\dfrac{2}{u^3}k

r(t)×r(t)=(2u3)2+(2u3)2+(2u3)2|r'(t)\times r''(t)|=\sqrt{(-\dfrac{2}{u^3})^2+(-\dfrac{2}{u^3})^2+(\dfrac{2}{u^3})^2}

=23u2u=\dfrac{2\sqrt{3}}{u^2|u|}

Find curvature


κ(t)=r(t)×r(t)(r(t))3\kappa(t)=\dfrac{|r'(t)\times r''(t)|}{(|r'(t)|)^{3}}

=23u2u(2u4+2u2+2u2)3=\dfrac{\dfrac{2\sqrt{3}}{u^2|u|}}{(\dfrac{\sqrt{2u^4+2u^2+2}}{u^2})^{3}}

=6u2u2(u4+u2+1)3/2=\dfrac{\sqrt{6}u^2|u|}{2(u^4+u^2+1)^{3/2}}

κ(u)=6u2u2(u4+u2+1)3/2\kappa(u)=\dfrac{\sqrt{6}u^2|u|}{2(u^4+u^2+1)^{3/2}}

b)


r(u)=0,6u4,6u4r'''(u)=\langle0, -\dfrac{6}{u^4}, -\dfrac{6}{u^4}\rangle

(r(u)×r(u))r(u)=02u3(6u4)+2u3(6u4)(r'(u)\times r''(u))\cdot r'''(u)=0-\dfrac{2}{u^3}(-\dfrac{6}{u^4})+\dfrac{2}{u^3}(-\dfrac{6}{u^4})

=0=0


τ(u)=(r(u)×r(u))r(u)(r(t)×r(t))2=0\tau(u)=\dfrac{(r'(u)\times r''(u))\cdot r'''(u)}{(|r'(t)\times r''(t)|)^2}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS