Find the curvature, the radius and the center of curvature at a point.
r=1+ cos theta ,theta=π/2
1
Expert's answer
2022-01-13T17:29:08-0500
r=f(θ)=1+cosθ⇒f(2π)=1f′(θ)=−sinθ⇒f′(2π)=−1f′′(θ)=−cosθ⇒f′′(2π)=0∴Radius of curvature=f(2π)2+2f′(2π)2−f(2π)f′′(2π)(f(2π)2+f′(2π)2)23=3223=322Now, curvature =Radius of Curvature1=223
And, Center of curvature = ((y0+R),(x0+f′(x0))R)[Where x0=2π,y0=f(2π)=1]=(1+322,(2π−1)322)
Comments
Leave a comment