Answer to Question #286743 in Differential Geometry | Topology for Riya

Question #286743

Find the curvature, the radius and the center of curvature at a point.


r=1+ cos theta ,theta=π/2



1
Expert's answer
2022-01-13T17:29:08-0500

r=f(θ)=1+cosθf(π2)=1f(θ)=sinθf(π2)=1f(θ)=cosθf(π2)=0Radius of curvature=(f(π2)2+f(π2)2)32f(π2)2+2f(π2)2f(π2)f(π2)=2323=223Now, curvature =1Radius of Curvature=322r=f(\theta)=1+cos\theta \Rightarrow f(\frac{\pi}{2})=1\\ f'(\theta)=-sin\theta\Rightarrow f'(\frac{\pi}{2})=-1\\ f''(\theta)=-cos\theta \Rightarrow f''(\frac{\pi}{2})=0\\ \therefore \text{Radius of curvature}\\= \dfrac{(f(\frac{\pi}{2})^2+f'(\frac{\pi}{2})^2)^\frac{3}{2}} {f(\frac{\pi}{2})^2+2f'(\frac{\pi}{2})^2-f(\frac{\pi}{2})f''(\frac{\pi}{2})}\\ =\dfrac{2^\frac{3}{2}}{3}=\dfrac{2\sqrt 2}{3}\\ \text{Now, curvature $=$}\dfrac{1}{\text{Radius of Curvature}}=\dfrac{3}{2\sqrt 2}



And, Center of curvature = ((y0+R),(x0+f(x0))R)[Where x0=π2,y0=f(π2)=1]                                            =(1+223,(π21)223)\text{And, Center of curvature = }((y_0+R),(x_0+f'(x_0))R)\\ \texttt{[Where $x_0=\frac{\pi}{2}, y_0=f(\frac{\pi}{2})=1$]}\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= (1+ \frac{2\sqrt 2}{3}, (\frac{\pi}{2}-1)\frac{2\sqrt 2}{3})\\



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment