Question #217613

Find the unit tangent vector at the point 2,0,pi for a curve which is described by the parametric equations

x=2Sina y=3cosa z=2a


1
Expert's answer
2021-07-18T14:58:31-0400
v(a)=r(a)=2cosa,3sina,2\vec v(a)=\vec r'(a)=\langle2\cos a, -3\sin a, 2\rangle

v(a)=4cos2a+9sin2a+4||\vec v(a)||=\sqrt{4\cos^2 a+9\sin^2 a+4}

=8+5sin2a=\sqrt{8+5\sin^2 a}

Point (2,0,π)(2, 0, \pi)


a=π2a=\dfrac{\pi}{2}


v(a)=r(a)=0,3,2\vec v(a)=\vec r'(a)=\langle0, -3, 2\rangle


v(a)=8+5(1)2=13||\vec v(a)||=\sqrt{8+5(1)^2}=\sqrt{13}

T(π2)=3j+2k13\vec T(\dfrac{\pi}{2})=\dfrac{-3\vec j+2\vec k}{\sqrt{13}}

T(π2)=0,31313,21313\vec T(\dfrac{\pi}{2})=\langle0, -\dfrac{3\sqrt{13}}{13}, \dfrac{2\sqrt{13}}{13}\rangle


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS