Question #217089

Give an example of a metric space which is not compact


1
Expert's answer
2021-07-30T15:07:31-0400

R is complete in its standard metric, but not compact. The open coverR=(3,1)(2,0)(1,1)(0,2)(1,3)has no finite subcover.\text{$\mathbb{R}$ is complete in its standard metric, but not compact. The open cover} \\R=⋯∪(−3,−1)∪(−2,0)∪(−1,1)∪(0,2)∪(1,3)∪⋯ \text{has no finite subcover.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS