Question #217091
Given an example of a connected space which is not pathwise connected .substantiate. Your claim
1
Expert's answer
2021-08-01T16:12:10-0400

We consider the set RK. That is the all open intervals together with intervals of the form(a,b)∖K where K=1n:nZ+ This space is connected as there are no open sets B and C such that RKBC,RKB,RKC,RKBC= but notpath-connected as there is no continous path lying in the set joining 2 arbitrary points in the set\text{We consider the set RK. That is the all open intervals together with intervals of the form} \\\text{(a,b)∖K where K={$\frac{1}{n}:n∈ \mathbb{Z}^+$} This space is connected as there are no open sets B} \\\text{ and C such that $RK\subset B\cup C, RK \cap B \neq \empty,RK \cap C\neq, RK \cap B \cap C = \empty$ but not}\\\text{path-connected as there }\\\text{is no continous path lying in the set joining 2 arbitrary points in the set}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS