A metric space is an ordered pair (M,d), where M is a set and d is a metric on M, i.e., a function
d:M×M→R such that for any x,y,z∈M , the following holds:
- d(x,y)=0⟺x=y (identity of indiscernibles)
- d(x,y)=d(y,x) (symmetry)
- d(x,z)≤d(x,y)+d(y,z) (subadditivity or triangle inequality).
An example of a metric space is (R,d), where d(x,y)=∣x−y∣. Indeed,
- d(x,y)=0⟺∣x−y∣=0⟺x−y=0⟺x=y
- d(x,y)=∣x−y∣=∣−(y−x)∣=∣y−x∣=d(y,x)
- d(x,z)=∣x−z=∣x−y+y−z∣≤∣x−y∣+∣y−z∣=d(x,y)+d(y,z)
Comments