Question #217097

Define a metric space .Give an example of a metric space


1
Expert's answer
2021-08-03T06:51:44-0400

A metric space is an ordered pair (M,d){\displaystyle (M,d)},  where M{\displaystyle M} is a set and d{\displaystyle d}  is a metric on M{\displaystyle M}, i.e., a function

d ⁣:M×MR{\displaystyle d\,\colon M\times M\to \mathbb {R} } such that for any x,y,zM{\displaystyle x,y,z\in M} , the following holds:

  1. d(x,y)=0    x=y{\displaystyle d(x,y)=0\iff x=y} (identity of indiscernibles)
  2. d(x,y)=d(y,x){\displaystyle d(x,y)=d(y,x)} (symmetry)
  3. d(x,z)d(x,y)+d(y,z){\displaystyle d(x,z)\leq d(x,y)+d(y,z)} (subadditivity or triangle inequality).

An example of a metric space is (R,d),(\mathbb R,d), where d(x,y)=xy.d(x,y)=|x-y|. Indeed,

  1. d(x,y)=0    xy=0    xy=0    x=y{\displaystyle d(x,y)=0\iff |x-y|=0 \iff x-y=0\iff x=y}
  2. d(x,y)=xy=(yx)=yx=d(y,x){\displaystyle d(x,y)=|x-y|=|-(y-x)|=|y-x|=d(y,x)}
  3. d(x,z)=xz=xy+yzxy+yz=d(x,y)+d(y,z){\displaystyle d(x,z)=|x-z=|x-y+y-z|\leq|x-y|+|y-z|= d(x,y)+d(y,z)}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS