Determine all topologies on a set X ={a,b,c}
Let us determine all topologies on a set "X =\\{a,b,c\\}:"
"\\tau_1=\\{\\emptyset, X\\}"
"\\tau_2=\\{\\emptyset,\\{a\\},\\{a,b\\}, \\{a,c\\}, X\\}"
"\\tau_3=\\{\\emptyset,\\{b\\},\\{a,b\\}, \\{b,c\\}, X\\}"
"\\tau_4=\\{\\emptyset,\\{c\\},\\{b,c\\}, \\{a,c\\}, X\\}"
"\\tau_5=\\{\\emptyset,\\{a\\}, \\{b,c\\}, X\\}"
"\\tau_6=\\{\\emptyset,\\{b\\}, \\{a,c\\}, X\\}"
"\\tau_7=\\{\\emptyset,\\{c\\},\\{a,b\\}, X\\}"
"\\tau_8=\\{\\emptyset,\\{a\\},\\{b\\}, \\{a,b\\}, X\\}"
"\\tau_9=\\{\\emptyset,\\{b\\},\\{c\\}, \\{b,c\\}, X\\}"
"\\tau_{10}=\\{\\emptyset,\\{a\\},\\{c\\}, \\{a,c\\}, X\\}"
"\\tau_{11}=\\{\\emptyset,\\{a\\},\\{b\\},\\{c\\}, \\{a,b\\}, \\{a,c\\}, \\{b,c\\}, X\\}"
"\\tau_{12}=\\{\\emptyset, \\{a,b\\}, X\\}"
"\\tau_{13}=\\{\\emptyset, \\{a,c\\}, X\\}"
"\\tau_{14}=\\{\\emptyset,\\{b,c\\}, X\\}"
Note that if the topology contains two different 2-element open sets, then by definition it contains also their intersection, that is a singleton.
Comments
Leave a comment