Find the curvature and torsion of the curve x=a(u-sinu),y=(1-cosu),z=bu
let
"r=[a(u-sinu),1-cosu,bu]"
so
"r^{'}" (single deriverative of r) "=[a(1-cosu),sinu,0]"
"r^{''}=[asinu,cosu,0]"
"r^{'''}=acosu,-sinu,0"
Now :
Curvature "=\\dfrac{|r^{'} \\times r^{''}|}{|r^{'}|^3}"
Now: "r^{'} \\times r^{''}=" "i[-bcosu]-j[-absinu]+k[a(cosu-cos^2u)-asin^2u]"
"=(-bcosu)i +(absinu)j+(acosu-a)k"
"|r^{'} \\times r^{''}|= \\sqrt{b^2(cos^2u+a^2sin^2u)+a^2+a^2(cos^2u-2cosu)}"
"|r^{'}|= \\sqrt{a^2(1+cos^2u)-2acosu+sin^2u+b}"
Curvature "= \\dfrac{|r^{'} \\times r^{''}|}{|r^{'}|^3} = \\dfrac{\\sqrt{b^2(cos^2u+a^2sin^2u)+a^2+a^2(cos^2u-2cosu)}}{(a^2(1+cos^2u)-2acosu+sin^2u+b)^{3\/2}}"
Torsion "= \\dfrac{[r^{'},r^{''},r^{'''}]}{|r^{'} \\times r^{''}|^2}"
"[r^{'},r^{''},r^{'''}]=[a(1-cosu)(0)] -[sinu(0)] +b(-asin^2u-acos^2u)= -ab"
so Torsion "= \\dfrac{-ab}{b^2(cos^2u+a^2sin^2u)+a^2+a^2(cos^2u-2cosu)}"
Comments
Leave a comment