Calculate the first fundamental forms of the following surfaces:
i. 𝝈(𝑢,𝑣)= (sinh𝑢sinh𝑣,sinh𝑢cosh𝑣,sinh𝑢)
ii. 𝝈(𝑢,𝑣) = (𝑢 − 𝑣,𝑢 + 𝑣, 𝑢^2+ 𝑣^2).
1)
"\\sigma = (sinhusinhv, sinhucoshv, sinhu)\\\\\n\\sigma_u = (coshusinhv, coshucoshv, coshu)\\\\\n\\sigma_v = (sinhucoshv, sinhusinhv, 0)\\\\"
"E= \\sigma_u \\cdot \\sigma_u = (coshusinhv, coshucoshv, coshu) \\cdot (coshusinhv, coshucoshv, coshu) = cosh^2usinh^2v+cosh^2ucosh^2v +cosh^2u = 2cosh^2ucosh^2v"
"G =\\sigma_v \\cdot \\sigma_v = (sinhucoshv, sinhusinhv, 0) \\cdot (sinhucoshv, sinhusinhv, 0) = sinh^2ucosh^2v+sinh^2usinh^2v +0 = sinh^2u + 2sinh^2usinh^2v"
"F= \\sigma_u \\cdot \\sigma_v = (coshusinhv, coshucoshv, coshu) \\cdot (sinhucoshv, sinhusinhv, 0) = 2sinhucoshusinhvcoshv"
"EG = 2sinh^2ucosh^2ucosh^2v + 4sinh^2usinh^2vcosh^2ucosh^2v"
"F^2 = 4sinh^2usinh^2vcosh^2ucosh^2v"
Let "k_1" represent the first fundamental form, then
"k_1 = EG-F^2"
So, "k_1 = 2sinh^2ucosh^2ucosh^2v"
2)
"\\sigma = (u-v, u+v, u^2+v^2) \\\\ \\sigma_u = (1,1,2u) \\\\ \\sigma_v = (-1,1,2v)"
"E= \\sigma_u \\cdot \\sigma_u = (1,1,2u) \\cdot (1,1,2u) = 1+1+ 4u^2 = 2+4u^2"
"G = \\sigma_v \\cdot \\sigma_v = (-1,1,2v) \\cdot (-1,1,2v) = 1+1+ 4v^2 = 2+4v^2"
"F = \\sigma_u \\cdot \\sigma_v = (1,1,2u) \\cdot (-1,1,2v) = -1+1+ 4uv= 4uv"
"EG = 4 + 8(u^2+v^2) +16u^2v^2"
"F^2 = 16u^2v^2"
"k_1 = EG - F^2 = 4 + 8(u^2+v^2)"
Comments
Leave a comment