Question #201109

Calculate the first fundamental forms of the following surfaces:

i. 𝝈(𝑒,𝑣)= (sinh𝑒sinh𝑣,sinh𝑒cosh𝑣,sinh𝑒)

ii. 𝝈(𝑒,𝑣) = (𝑒 βˆ’ 𝑣,𝑒 + 𝑣, 𝑒^2+ 𝑣^2).


1
Expert's answer
2021-06-01T03:45:55-0400

1)

Οƒ=(sinhusinhv,sinhucoshv,sinhu)Οƒu=(coshusinhv,coshucoshv,coshu)Οƒv=(sinhucoshv,sinhusinhv,0)\sigma = (sinhusinhv, sinhucoshv, sinhu)\\ \sigma_u = (coshusinhv, coshucoshv, coshu)\\ \sigma_v = (sinhucoshv, sinhusinhv, 0)\\


E=Οƒuβ‹…Οƒu=(coshusinhv,coshucoshv,coshu)β‹…(coshusinhv,coshucoshv,coshu)=cosh2usinh2v+cosh2ucosh2v+cosh2u=2cosh2ucosh2vE= \sigma_u \cdot \sigma_u = (coshusinhv, coshucoshv, coshu) \cdot (coshusinhv, coshucoshv, coshu) = cosh^2usinh^2v+cosh^2ucosh^2v +cosh^2u = 2cosh^2ucosh^2v


G=Οƒvβ‹…Οƒv=(sinhucoshv,sinhusinhv,0)β‹…(sinhucoshv,sinhusinhv,0)=sinh2ucosh2v+sinh2usinh2v+0=sinh2u+2sinh2usinh2vG =\sigma_v \cdot \sigma_v = (sinhucoshv, sinhusinhv, 0) \cdot (sinhucoshv, sinhusinhv, 0) = sinh^2ucosh^2v+sinh^2usinh^2v +0 = sinh^2u + 2sinh^2usinh^2v


F=Οƒuβ‹…Οƒv=(coshusinhv,coshucoshv,coshu)β‹…(sinhucoshv,sinhusinhv,0)=2sinhucoshusinhvcoshvF= \sigma_u \cdot \sigma_v = (coshusinhv, coshucoshv, coshu) \cdot (sinhucoshv, sinhusinhv, 0) = 2sinhucoshusinhvcoshv


EG=2sinh2ucosh2ucosh2v+4sinh2usinh2vcosh2ucosh2vEG = 2sinh^2ucosh^2ucosh^2v + 4sinh^2usinh^2vcosh^2ucosh^2v


F2=4sinh2usinh2vcosh2ucosh2vF^2 = 4sinh^2usinh^2vcosh^2ucosh^2v


Let k1k_1 represent the first fundamental form, then

k1=EGβˆ’F2k_1 = EG-F^2


So, k1=2sinh2ucosh2ucosh2vk_1 = 2sinh^2ucosh^2ucosh^2v


2)

Οƒ=(uβˆ’v,u+v,u2+v2)Οƒu=(1,1,2u)Οƒv=(βˆ’1,1,2v)\sigma = (u-v, u+v, u^2+v^2) \\ \sigma_u = (1,1,2u) \\ \sigma_v = (-1,1,2v)


E=Οƒuβ‹…Οƒu=(1,1,2u)β‹…(1,1,2u)=1+1+4u2=2+4u2E= \sigma_u \cdot \sigma_u = (1,1,2u) \cdot (1,1,2u) = 1+1+ 4u^2 = 2+4u^2


G=Οƒvβ‹…Οƒv=(βˆ’1,1,2v)β‹…(βˆ’1,1,2v)=1+1+4v2=2+4v2G = \sigma_v \cdot \sigma_v = (-1,1,2v) \cdot (-1,1,2v) = 1+1+ 4v^2 = 2+4v^2


F=Οƒuβ‹…Οƒv=(1,1,2u)β‹…(βˆ’1,1,2v)=βˆ’1+1+4uv=4uvF = \sigma_u \cdot \sigma_v = (1,1,2u) \cdot (-1,1,2v) = -1+1+ 4uv= 4uv


EG=4+8(u2+v2)+16u2v2EG = 4 + 8(u^2+v^2) +16u^2v^2


F2=16u2v2F^2 = 16u^2v^2


k1=EGβˆ’F2=4+8(u2+v2)k_1 = EG - F^2 = 4 + 8(u^2+v^2)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS