1)
Ο=(sinhusinhv,sinhucoshv,sinhu)Οuβ=(coshusinhv,coshucoshv,coshu)Οvβ=(sinhucoshv,sinhusinhv,0)
E=Οuββ
Οuβ=(coshusinhv,coshucoshv,coshu)β
(coshusinhv,coshucoshv,coshu)=cosh2usinh2v+cosh2ucosh2v+cosh2u=2cosh2ucosh2v
G=Οvββ
Οvβ=(sinhucoshv,sinhusinhv,0)β
(sinhucoshv,sinhusinhv,0)=sinh2ucosh2v+sinh2usinh2v+0=sinh2u+2sinh2usinh2v
F=Οuββ
Οvβ=(coshusinhv,coshucoshv,coshu)β
(sinhucoshv,sinhusinhv,0)=2sinhucoshusinhvcoshv
EG=2sinh2ucosh2ucosh2v+4sinh2usinh2vcosh2ucosh2v
F2=4sinh2usinh2vcosh2ucosh2v
Let k1β represent the first fundamental form, then
k1β=EGβF2
So, k1β=2sinh2ucosh2ucosh2v
2)
Ο=(uβv,u+v,u2+v2)Οuβ=(1,1,2u)Οvβ=(β1,1,2v)
E=Οuββ
Οuβ=(1,1,2u)β
(1,1,2u)=1+1+4u2=2+4u2
G=Οvββ
Οvβ=(β1,1,2v)β
(β1,1,2v)=1+1+4v2=2+4v2
F=Οuββ
Οvβ=(1,1,2u)β
(β1,1,2v)=β1+1+4uv=4uv
EG=4+8(u2+v2)+16u2v2
F2=16u2v2
k1β=EGβF2=4+8(u2+v2)
Comments