α = 2 i − 3 j + k β = 7 i − 5 j + k \alpha = 2i-3j+k \\
\beta = 7i-5j+k α = 2 i − 3 j + k β = 7 i − 5 j + k
Let d = α × β d = \alpha \times \beta d = α × β
Consider the computation
d = ∣ i j k 2 − 3 1 7 − 5 1 ∣ = ( − 3 + 5 ) i − ( 2 − 7 ) j + ( − 10 + 21 ) k = 2 i + 5 j + 11 k d= \begin{vmatrix} i&j&k\\ 2&-3&1\\7&-5&1
\end{vmatrix} = (-3+5)i -(2-7)j +(-10+21)k = 2i+5j+11k d = ∣ ∣ i 2 7 j − 3 − 5 k 1 1 ∣ ∣ = ( − 3 + 5 ) i − ( 2 − 7 ) j + ( − 10 + 21 ) k = 2 i + 5 j + 11 k
Let c be the unit vector of d.c = 2 i + 5 j + 11 k ( 2 ) 2 + ( 5 ) 2 + ( 11 ) 2 = 2 i + 5 j + 11 k 150 = 2 i + 5 j + 11 k 5 6 c= \dfrac{2i+5j+11k}{\sqrt{(2)^2+(5)^2+(11)^2}} = \dfrac{2i+5j+11k}{\sqrt{150}} = \dfrac{2i+5j+11k}{5\sqrt{6}} c = ( 2 ) 2 + ( 5 ) 2 + ( 11 ) 2 2 i + 5 j + 11 k = 150 2 i + 5 j + 11 k = 5 6 2 i + 5 j + 11 k
We claim that c is the desired unit vector perpendicular to α \alpha α and β \beta β . To see this consider
c ⋅ α = 1 5 6 ( 2 i + 5 j + 11 k ) ⋅ ( 2 i − 3 j + k ) = 1 5 6 ( 4 − 15 + 11 ) = 0 c \cdot \alpha = \frac{1}{5\sqrt6}(2i+5j+11k) \cdot (2i-3j+k) = \frac{1}{5\sqrt6} (4-15+11) = 0 c ⋅ α = 5 6 1 ( 2 i + 5 j + 11 k ) ⋅ ( 2 i − 3 j + k ) = 5 6 1 ( 4 − 15 + 11 ) = 0
Also, consider
c ⋅ β = 1 5 6 ( 2 i + 5 j + 11 k ) ⋅ ( 7 i − 5 j + k ) = 1 5 6 ( 14 − 25 + 11 ) = 0 c \cdot \beta = \frac{1}{5\sqrt6}(2i+5j+11k) \cdot (7i-5j+k) = \frac{1}{5\sqrt6} (14-25+11) = 0 c ⋅ β = 5 6 1 ( 2 i + 5 j + 11 k ) ⋅ ( 7 i − 5 j + k ) = 5 6 1 ( 14 − 25 + 11 ) = 0
Comments